Optimization in SciDAC applications

We present a brief overview of optimization tools that are being developed for SciDAC applications. We emphasize derivative-free and gradient-based methods since these tools make minimal demands on the user and the application. We discuss the performance of these tools and point out developments that have led to significant improvements in performance. A parameter estimation problem that arises in nuclear fission is used to illustrate the challenges that arise as we attack nonlinear, noisy, computationally-intensive optimization applications.

[1]  Guoliang Xue,et al.  The MINPACK-2 test problem collection , 1992 .

[2]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[3]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[4]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[5]  Katya Scheinberg,et al.  On the convergence of derivative-free methods for unconstrained optimization , 1997 .

[6]  William W. Hager,et al.  Uniform Convergence and Mesh Independence of Newton's Method for Discretized Variational Problems , 2000, SIAM J. Control. Optim..

[7]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[8]  M. J. D. Powell,et al.  UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..

[9]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[10]  Lois Curfman McInnes,et al.  TAO users manual. , 2003 .

[11]  Jarek Nieplocha,et al.  Component‐based integration of chemistry and optimization software , 2004, Journal of computational chemistry.

[12]  M. J. D. Powell,et al.  Least Frobenius norm updating of quadratic models that satisfy interpolation conditions , 2004, Math. Program..

[13]  J. Dobaczewski,et al.  Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (V) HFODD(v2.08k) , 2005, Comput. Phys. Commun..

[14]  Charles Audet,et al.  Nonlinear Programming by Mesh Adaptive Direct Searches , 2005 .

[15]  Scott Klasky,et al.  Gyrokinetic particle simulation of fusion plasmas: path to petascale computing , 2006 .

[16]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .