Flexible Simulated Moment Estimation of Nonlinear Errors-in-Variables Models

Nonlinear regression with measurement error is important for estimation from microeconomic data. One approach to identification and estimation is a causal model, in which the unobserved true variable is predicted by observable variables. This paper details the estimation of such a model using simulated moments and a flexible disturbance distribution. An estimator of the asymptotic variance is given for parametric models. Also, a semiparametric consistency result is given. The value of the estimator is demonstrated in a Monte Carlo study and an application to estimating Engel Curves.

[1]  P. Robinson Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .

[2]  Hidehiko Ichimura,et al.  Identification and estimation of polynomial errors-in-variables models , 1991 .

[3]  Yasuo Amemiya,et al.  Instrumental variable estimator for the nonlinear errors-in-variables model , 1985 .

[4]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[5]  W. Fuller,et al.  Estimation of Nonlinear Errors-in-Variables Models , 1982 .

[6]  C. Leser Forms of Engel functions , 1963 .

[7]  I. Badawi An elasticity can be estimated consistently without a priori knowledge of functional form , 1983 .

[8]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[9]  W. Newey,et al.  Series Estimation of Regression Functionals , 1994, Econometric Theory.

[10]  Jerry A. Hausman,et al.  Nonlinear errors in variables Estimation of some Engel curves , 1995 .

[11]  Takeshi Amemiya,et al.  The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model , 1977 .

[12]  W. M. Gorman Essays in The theory and measurement of consumer behaviour in honour of Sir Richard Stone : Some Engel curves , 1981 .

[13]  Stephen G. Donald,et al.  Choosing the Number of Instruments , 2001 .

[14]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[15]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[16]  H. White,et al.  Instrumental Variables Regression with Independent Observations , 1982 .

[17]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[18]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[19]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .