High efficiency photovoltaic module based on mesoscopic organometal halide perovskite

We fabricated monolithic solid state modules based on organometal CH3NH3PbI3 and CH3NH3PbI3 − xClx perovskites using poly-(3-hexylthiophene) and Spiro-OMeTAD as hole transport materials (HTMs). In particular, we developed innovative and scalable patterning procedures to minimize the series resistance at the integrated series-interconnections. By using these optimization steps, we reached a maximum conversion efficiency of 8.2% under AM1.5G at 1 Sun illumination conditions using the CH3NH3PbI3 − xClx perovskite and the poly-(3-hexylthiophene) as HTM. Finally, we investigated the double-step deposition of CH3NH3PbI3 using the Spiro-OMeTAD, reaching a maximum conversion efficiency on active area (10.08 cm2) equal to 13.0% (9.1% on aperture area) under AM1.5G at 1 Sun illumination conditions. This remarkable result represents the highest PCE value reached for the perovskite solar modules. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  G. K. Reeves,et al.  Obtaining the specific contact resistance from transmission line model measurements , 1982, IEEE Electron Device Letters.

[2]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[3]  A Di Carlo,et al.  Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. , 2014, Physical chemistry chemical physics : PCCP.

[4]  P. Vinod Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method , 2011 .

[5]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[6]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[7]  T. Brown,et al.  Laser processing of TiO2 films for dye solar cells: a thermal, sintering, throughput and embodied energy investigation , 2014 .

[8]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[9]  Steve Hegedus,et al.  Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers , 2006 .

[10]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[11]  Paolo Lugli,et al.  Fully-sprayed and flexible organic photodiodes with transparent carbon nanotube electrodes. , 2014, ACS applied materials & interfaces.

[12]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[13]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[14]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[15]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[16]  Michael Graetzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films , 1991 .

[17]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[18]  Aldo Di Carlo,et al.  Realization of high performance large area Z‐series‐interconnected opaque dye solar cell modules , 2013 .

[19]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[20]  Aldo Di Carlo,et al.  High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer , 2014 .

[21]  Y. Kivshar,et al.  Wide-band negative permeability of nonlinear metamaterials , 2012, Scientific Reports.

[22]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[23]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[24]  Nam-Gyu Park,et al.  Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3 , 2014 .

[25]  A. Di Carlo,et al.  Solid state dye solar cell modules , 2014 .

[26]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[27]  Yang Huang,et al.  Design of DSC panel with efficiency more than 6 , 2005 .

[28]  Q. Gong,et al.  A highly efficient mesoscopic solar cell based on CH₃NH₃PbI(3-x)Cl(x) fabricated via sequential solution deposition. , 2014, Chemical communications.

[29]  Takanori Sutou,et al.  Efficient dye-sensitized solar cell sub-modules , 2010 .

[30]  Ivan Mora-Sero,et al.  Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[31]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[32]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[33]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .