Efficient Low‐Bandgap Polymer Solar Cells with High Open‐Circuit Voltage and Good Stability

T. Ma, K. Jiang, Prof. H. Yan Hong Kong University of Science and Technology-Shenzhen Research Institute No. 9 Yuexing 1st RD Hi-Tech Park , Nanshan , Shenzhen 518057 , China E-mail: hyan@ust.hk T. Ma, K. Jiang, S. Chen, H. Hu, H. Lin, Z. Li, Dr. J. Zhao, Y. Liu, Prof. H. Yan Department of Chemistry and Energy Institute The Hong Kong University of Science and Technology Clear Water Bay , Hong Kong Dr. Y. Chang, Dr. C. Hsiao Raynergy Tek Incorporation, 2F, No. 60 Hsinchu Science Park Park Avenue 2 , Hsinchu 30075 , Taiwan

[1]  Joshua H. Carpenter,et al.  Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit , 2015 .

[2]  I. Samuel,et al.  Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance , 2015 .

[3]  Jin Young Kim,et al.  Small‐Bandgap Polymer Solar Cells with Unprecedented Short‐Circuit Current Density and High Fill Factor , 2015, Advanced materials.

[4]  Dieter Neher,et al.  Competition between recombination and extraction of free charges determines the fill factor of organic solar cells , 2015, Nature Communications.

[5]  S. Albrecht,et al.  Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells , 2015, Nature Communications.

[6]  F. So,et al.  High efficiency air-processed dithienogermole-based polymer solar cells. , 2015, ACS applied materials & interfaces.

[7]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[8]  Weiwei Li,et al.  High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. , 2015, Journal of the American Chemical Society.

[9]  Yang Yang,et al.  High-performance multiple-donor bulk heterojunction solar cells , 2015, Nature Photonics.

[10]  P. Chou,et al.  A silole copolymer containing a ladder-type heptacylic arene and naphthobisoxadiazole moieties for highly efficient polymer solar cells , 2015 .

[11]  Henning Sirringhaus,et al.  Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. , 2015, Journal of the American Chemical Society.

[12]  C. B. Nielsen,et al.  2,1,3-Benzothiadiazole-5,6-Dicarboxylic Imide – A Versatile Building Block for Additive- and Annealing-Free Processing of Organic Solar Cells with Efficiencies Exceeding 8% , 2014, Advanced materials.

[13]  Fei Huang,et al.  Small-molecule solar cells with efficiency over 9% , 2014, Nature Photonics.

[14]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[15]  Weiwei Li,et al.  Small-bandgap semiconducting polymers with high near-infrared photoresponse. , 2014, Journal of the American Chemical Society.

[16]  Junbiao Peng,et al.  Low Band‐Gap Conjugated Polymers with Strong Interchain Aggregation and Very High Hole Mobility Towards Highly Efficient Thick‐Film Polymer Solar Cells , 2014, Advanced materials.

[17]  Gang Li,et al.  25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research , 2013, Advanced materials.

[18]  Christoph J. Brabec,et al.  An Efficient Solution‐Processed Intermediate Layer for Facilitating Fabrication of Organic Multi‐Junction Solar Cells , 2013 .

[19]  Robert P. H. Chang,et al.  Polymer solar cells with enhanced fill factors , 2013, Nature Photonics.

[20]  M. Wienk,et al.  High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. , 2013, Angewandte Chemie.

[21]  Dieter Neher,et al.  Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole‐Based Solution‐Processed Small Molecule Solar Cells , 2013 .

[22]  Barry P Rand,et al.  Effect of Fluorination on the Properties of a Donor–Acceptor Copolymer for Use in Photovoltaic Cells and Transistors , 2013 .

[23]  Andrew C. Stuart,et al.  Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. , 2013, Journal of the American Chemical Society.

[24]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[25]  Yang Yang,et al.  Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. , 2012, Journal of the American Chemical Society.

[26]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[27]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[28]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[29]  C. Brabec,et al.  Recombination‐Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells , 2009 .

[30]  Wi Hyoung Lee,et al.  Enhancement of Field-Effect Mobility and Stability of Poly(3-hexylthiophene) Field-Effect Transistors by Conformational Change , 2008 .

[31]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[32]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[33]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[34]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[35]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[36]  George D. Spyropoulos,et al.  Air-processed organic tandem solar cells on glass: toward competitive operating lifetimes , 2015 .

[37]  Jin Jang,et al.  A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83% , 2015 .

[38]  Yang Yang,et al.  Synthesis of 5 H ‐ Dithieno [ 3 , 2 ‐ b : 2 ′ , 3 ′ ‐ d ] pyran as an Electron-Rich Building Block for Donor − Acceptor Type Low-Bandgap Polymers , 2013 .