Fast Evaluation of Holonomic Functions Near and in Regular Singularities

A holonomic function is an analytic function, which satisfies a linear differential equationLf= 0 with polynomial coefficients. In particular, the elementary functions exp,log,sin, etc., and many special functions such as erf, Si, Bessel functions, etc., are holonomic functions. In a previous paper, we have given an asymptotically fast algorithm to evaluate a holonomic function f at a non-singular point z? on the Riemann surface of f, up to any number of decimal digits while estimating the error. However, this algorithm becomes inefficient, when z? approaches a singularity of f. In this paper, we obtain efficient algorithms for the evaluation of holonomic functions near and in singular points where the differential operator L is regular (or, slightly more generally, where L is quasi-regular?a concept to be introduced below).

[1]  Dana Schlomiuk,et al.  Bifurcations and Periodic Orbits of Vector Fields , 1993 .

[2]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[3]  Henri Poincaré,et al.  Sur les intégrales irrégulières , 1886 .

[4]  H. L. Turrittin Reduction of ordinary differential equations to the Birkhoff canonical form , 1963 .

[5]  P. Hartman Ordinary Differential Equations , 1965 .

[6]  Joris van der Hoeven,et al.  Computation of the monodromy of generalized polylogarithms , 1998, ISSAC '98.

[7]  Michel Petitot,et al.  Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..

[8]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[9]  Joris van der Hoeven,et al.  Fast Evaluation of Holonomic Functions , 1999, Theor. Comput. Sci..

[10]  Daniel Richardson,et al.  How to Recognize Zero , 1997, J. Symb. Comput..

[11]  George D. Birkhoff,et al.  Singular points of ordinary linear differential equations , 1909 .

[12]  Mark van Hoeij,et al.  Formal Solutions and Factorization of Differential Operators with Power Series Coefficients , 1997, J. Symb. Comput..

[13]  G. Frobenius,et al.  Ueber die Integration der linearen Differentialgleichungen durch Reihen. , 2022 .

[14]  Jean Ecalle,et al.  Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac , 1992 .

[15]  Jean Della Dora,et al.  An Algorithm to Obtain Formal Solutions of a Linear Homogeneous Differential Equation at an Irregular Singular Point , 1982, EUROCAM.

[16]  Kuo-Tsai Chen,et al.  Algebras of iterated path integrals and fundamental groups , 1971 .

[17]  Jean Ecalle,et al.  Six Lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac’s Conjecture , 1993 .

[18]  B. Braaksma,et al.  Multisummability and Stokes multipliers of linear meromorphic differential equations , 1991 .

[19]  J. P. Ramis,et al.  Les series κ — sommables et leurs applications , 1980 .

[20]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .

[21]  Werner Balser,et al.  From Divergent Power Series to Analytic Functions: Theory and Application of Multisummable Power Series , 1994 .

[22]  L. Lipshitz,et al.  D-finite power series , 1989 .

[23]  George D. Birkhoff,et al.  Equivalent singular points of ordinary linear differential equations , 1913 .

[24]  E. Fabry,et al.  Sur les intégrales des équations différentielles linéaires à coefficients rationnels , 1885 .