Subclinical carotid atherosclerosis: short-term natural history of lipid-rich necrotic core--a multicenter study with MR imaging.

PURPOSE To use magnetic resonance (MR) imaging to examine the short-term (6 months) natural history of the lipid-rich necrotic core (LRNC) in carotid artery plaques by examining the placebo group of a multicenter clinical trial. MATERIALS AND METHODS Study procedures and consent forms were approved by the institutional review board for this HIPAA-compliant study. Written informed consent was obtained for all enrolled subjects. Subjects in the placebo group of a multicenter clinical trial who showed LRNC at screening MR imaging had a follow-up MR imaging examination after 6 months. Lumen and wall volumes and LRNC volume and percentage were measured on images from both examinations by readers who were blinded to the time sequence. Plaque progression was calculated as annualized change in common coverage by using the carotid artery bifurcation as a landmark. Associations of clinical and imaging variables with LRNC progression were examined by using linear regression analysis. RESULTS Fifty-nine of 73 (81%) subjects completed the study, with a mean interval ± standard deviation of 6.9 months ± 1.0. The mean progression rates per year ± standard deviation of LRNC volume and percentage were -5.2 mm(3) ± 34.3 (P = .249) and -1.74% ± 6.27% (P = .038), respectively. Of the clinical and imaging variables examined, presence of intraplaque hemorrhage (IPH) was significantly associated with LRNC progression (P = .001). Plaques with IPH had increased LRNC volume per year (62.9 mm(3) ± 46.2 vs -8.8 mm(3) ± 29.9, P < .001) and percentage per year (3.67% ± 1.85% vs -2.03% ± 6.30%, P = .126) compared with those without IPH. Spearman correlation analysis showed that change in LRNC positively correlated with change in wall volume (ρ = 0.60, P < .001), but not with change in lumen volume (ρ = -0.17, P = .201). CONCLUSION Serial MR imaging of the carotid artery allowed observation of changes in LRNC over a short follow-up period and demonstrated the complexity of plaque progression patterns related to tissue composition. LRNC progression may be influenced not only by clinical characteristics, but also and to a large extent by plaque characteristics such as IPH.

[1]  M. Robson,et al.  Early changes in arterial structure and function following statin initiation: Quantification by magnetic resonance imaging , 2008, Atherosclerosis.

[2]  Milind Y Desai,et al.  Statin-Induced Cholesterol Lowering and Plaque Regression After 6 Months of Magnetic Resonance Imaging–Monitored Therapy , 2004, Circulation.

[3]  Akiko Maehara,et al.  A prospective natural-history study of coronary atherosclerosis. , 2011, The New England journal of medicine.

[4]  C. Yuan,et al.  Arterial remodeling in [corrected] subclinical carotid artery disease. , 2009, JACC. Cardiovascular imaging.

[5]  Stephen J. Nicholls,et al.  Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. , 2010, Journal of the American College of Cardiology.

[6]  C. Yuan,et al.  Rationale and Design of the Carotid Plaque in Human for All Evaluations With Aggressive Rosuvastatin Therapy (CHALLENGER Trial) , 2009 .

[7]  W. Niessen,et al.  Carotid Atherosclerotic Plaque Progression and Change in Plaque Composition Over Time: A 5-Year Follow-Up Study Using Serial CT Angiography , 2012, American Journal of Neuroradiology.

[8]  Christopher P Cannon,et al.  Intensive versus moderate lipid lowering with statins after acute coronary syndromes. , 2004, The New England journal of medicine.

[9]  C. Yuan,et al.  MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. , 2011, JACC. Cardiovascular imaging.

[10]  R. Cury,et al.  Intra‐ and interreader reproducibility of magnetic resonance imaging for quantifying the lipid‐rich necrotic core is improved with gadolinium contrast enhancement , 2006, Journal of magnetic resonance imaging : JMRI.

[11]  Aad van der Lugt,et al.  Determinants of magnetic resonance imaging detected carotid plaque components: the Rotterdam Study. , 2012, European heart journal.

[12]  Chun Yuan,et al.  Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. , 2008, American heart journal.

[13]  W. Kerwin,et al.  Contrast‐enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization , 2002, Journal of magnetic resonance imaging : JMRI.

[14]  Bruce R. Brodie,et al.  Effect of Intensive Compared With Moderate Lipid-Lowering Therapy on Progression of Coronary Atherosclerosis A Randomized Controlled Trial , 2004 .

[15]  W. Kerwin,et al.  Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis. , 2005, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[16]  Frits Mastik,et al.  Effects of the Direct Lipoprotein-Associated Phospholipase A2 Inhibitor Darapladib on Human Coronary Atherosclerotic Plaque , 2008, Circulation.

[17]  Raimund Erbel,et al.  Spectrum of remodeling behavior observed with serial long-term (>/=12 months) follow-up intravascular ultrasound studies in left main coronary arteries. , 2004, The American journal of cardiology.

[18]  P. Neuvonen,et al.  Drug interactions with lipid‐lowering drugs: Mechanisms and clinical relevance , 2006, Clinical pharmacology and therapeutics.

[19]  Chun Yuan,et al.  Presence of Intraplaque Hemorrhage Stimulates Progression of Carotid Atherosclerotic Plaques: A High-Resolution Magnetic Resonance Imaging Study , 2005, Circulation.

[20]  Peter J. Kirkpatrick,et al.  MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo , 2004, Neuroradiology.

[21]  R. Balaban,et al.  Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. , 2002, Radiology.

[22]  Fei Liu,et al.  Magnetic Resonance Imaging of Carotid Atherosclerosis: Plaque Analysis , 2007, Topics in magnetic resonance imaging : TMRI.

[23]  C. Yuan,et al.  Quantitative Evaluation of Carotid Plaque Composition by In Vivo MRI , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[24]  C. Yuan,et al.  Sustained acceleration in carotid atherosclerotic plaque progression with intraplaque hemorrhage: a long-term time course study. , 2012, JACC. Cardiovascular imaging.

[25]  David Saloner,et al.  Atherosclerotic plaque progression in carotid arteries: monitoring with high-spatial-resolution MR imaging--multicenter trial. , 2009, Radiology.

[26]  R. Kronmal,et al.  Risk Factor Associations With the Presence of a Lipid Core in Carotid Plaque of Asymptomatic Individuals Using High-Resolution MRI: The Multi-Ethnic Study of Atherosclerosis (MESA) , 2008, Stroke.

[27]  Chun Yuan,et al.  In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. , 2002 .

[28]  P. Serruys,et al.  First-in-man prospective evaluation of temporal changes in coronary plaque composition by in vivo intravascular ultrasound radiofrequency data analysis: an Integrated Biomarker and Imaging Study (IBIS) substudy. , 2005, EuroIntervention.

[29]  Z. Fayad,et al.  Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. , 2005, Journal of the American College of Cardiology.

[30]  V. Fuster,et al.  Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. , 2005, Journal of the American College of Cardiology.

[31]  V. Fuster,et al.  Effects of Lipid-Lowering by Simvastatin on Human Atherosclerotic Lesions: A Longitudinal Study by High-Resolution, Noninvasive Magnetic Resonance Imaging , 2001, Circulation.

[32]  M. Budoff,et al.  The association of Framingham and Reynolds risk scores with incidence and progression of coronary artery calcification in MESA (Multi-Ethnic Study of Atherosclerosis). , 2010, Journal of the American College of Cardiology.

[33]  Chun Yuan,et al.  In Vivo Quantitative Measurement of Intact Fibrous Cap and Lipid-Rich Necrotic Core Size in Atherosclerotic Carotid Plaque: Comparison of High-Resolution, Contrast-Enhanced Magnetic Resonance Imaging and Histology , 2005, Circulation.

[34]  Ahmed Tawakol,et al.  Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial , 2011, The Lancet.

[35]  V. Fuster,et al.  Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. , 1996, Circulation.

[36]  C. Yuan,et al.  Scan‐rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T , 2010, Journal of magnetic resonance imaging : JMRI.

[37]  V. Fuster,et al.  Lipid Lowering by Simvastatin Induces Regression of Human Atherosclerotic Lesions: Two Years’ Follow-Up by High-Resolution Noninvasive Magnetic Resonance Imaging , 2002, Circulation.

[38]  M. Robson,et al.  Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. , 2009, Journal of the American College of Cardiology.

[39]  C. Zarins,et al.  Compensatory enlargement of human atherosclerotic coronary arteries. , 1987, The New England journal of medicine.