Eigenvalues of banded symmetric Toeplitz matrices are known almost in close form ?
暂无分享,去创建一个
[1] Dario Bini,et al. SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .
[2] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[3] Maya Neytcheva,et al. Spectral analysis of coupled PDEs and of their Schur complements via the notion of generalized locally Toeplitz sequences , 2015 .
[4] Stefano Serra Capizzano,et al. Asymptotic Results on the Spectra of Block Toeplitz Preconditioned Matrices , 1998, SIAM J. Matrix Anal. Appl..
[5] Long Chen,et al. Finite Difference Methods , 2000 .
[6] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering , 1996 .
[7] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[8] Stefano Serra,et al. On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .
[9] Richard S. Varga,et al. Extrapolation methods: theory and practice , 1993, Numerical Algorithms.
[10] Stefano Serra,et al. On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .
[11] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[12] J. M. Bogoya,et al. From convergence in distribution to uniform convergence , 2015, 1509.01836.
[13] Carlo Garoni,et al. Spectral Analysis and Spectral Symbol of d-variate $\mathbb Q_{\boldsymbol p}$ Lagrangian FEM Stiffness Matrices , 2015, SIAM J. Matrix Anal. Appl..
[14] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[15] Albrecht Böttcher,et al. Inside the eigenvalues of certain Hermitian Toeplitz band matrices , 2010, J. Comput. Appl. Math..