Next-Generation Machine Learning for Biological Networks

[1]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[2]  Lu Zhang,et al.  From machine learning to deep learning: progress in machine intelligence for rational drug discovery. , 2017, Drug discovery today.

[3]  Geoffrey E. Hinton,et al.  Dynamic Routing Between Capsules , 2017, NIPS.

[4]  Anna Goldenberg,et al.  Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases , 2017, PLoS Comput. Biol..

[5]  Mariano J. Alvarez,et al.  An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis. , 2017, Cell reports.

[6]  Krister Wennerberg,et al.  Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression , 2017, Bioinform..

[7]  Anne E Carpenter,et al.  Opportunities and obstacles for deep learning in biology and medicine , 2017, bioRxiv.

[8]  Mariano J. Alvarez,et al.  The recurrent architecture of tumour initiation, progression and drug sensitivity , 2016, Nature Reviews Cancer.

[9]  Kara Dolinski,et al.  The BioGRID interaction database: 2017 update , 2016, Nucleic Acids Res..

[10]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[11]  Laleh Soltan Ghoraie,et al.  A review of connectivity map and computational approaches in pharmacogenomics , 2017, Briefings Bioinform..

[12]  Mehmet Tan Prediction of anti-cancer drug response by kernelized multi-task learning , 2016, Artif. Intell. Medicine.

[13]  Jure Leskovec,et al.  Interpretable Decision Sets: A Joint Framework for Description and Prediction , 2016, KDD.

[14]  S. Friend,et al.  Crowdsourcing biomedical research: leveraging communities as innovation engines , 2016, Nature Reviews Genetics.

[15]  O. Stegle,et al.  Deep learning for computational biology , 2016, Molecular systems biology.

[16]  Raghvendra Mall,et al.  Detection of statistically significant network changes in complex biological networks , 2016, bioRxiv.

[17]  Evan O. Paull,et al.  Inferring causal molecular networks: empirical assessment through a community-based effort , 2016, Nature Methods.

[18]  A. Butte,et al.  Leveraging big data to transform target selection and drug discovery , 2016, Clinical pharmacology and therapeutics.

[19]  Andrea Califano,et al.  Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression. , 2016, Cancer research.

[20]  Joshua A. Bittker,et al.  Correlating chemical sensitivity and basal gene expression reveals mechanism of action , 2015, Nature chemical biology.

[21]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[22]  Brendan J. Frey,et al.  Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets , 2016, Proceedings of the IEEE.

[23]  Joshua A. Bittker,et al.  Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. , 2015, Cancer discovery.

[24]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[25]  Cynthia Rudin,et al.  Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model , 2015, ArXiv.

[26]  Laura M. Heiser,et al.  Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics , 2015, Molecular Cancer Research.

[27]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[28]  María Rodríguez Martínez,et al.  Elucidating Compound Mechanism of Action by Network Perturbation Analysis Graphical , 2015 .

[29]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[30]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[31]  Nci Dream Community A community effort to assess and improve drug sensitivity prediction algorithms , 2014 .

[32]  Yang Xie,et al.  A community computational challenge to predict the activity of pairs of compounds , 2014, Nature Biotechnology.

[33]  Jonathan R. Karr,et al.  WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions , 2014, Database J. Biol. Databases Curation.

[34]  A. Butte,et al.  The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease , 2014, Cell host & microbe.

[35]  Samantha A. Morris,et al.  CellNet: Network Biology Applied to Stem Cell Engineering , 2014, Cell.

[36]  J. Collins,et al.  A brief history of synthetic biology , 2014, Nature Reviews Microbiology.

[37]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[38]  Ferat Sahin,et al.  A survey on feature selection methods , 2014, Comput. Electr. Eng..

[39]  Laura M. Heiser,et al.  A community effort to assess and improve drug sensitivity prediction algorithms , 2014, Nature Biotechnology.

[40]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[41]  Joshua C. Gilbert,et al.  An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules , 2013, Cell.

[42]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[43]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[44]  Kevin Y. Yip,et al.  Machine learning and genome annotation: a match meant to be? , 2013, Genome Biology.

[45]  J C Costello,et al.  Seeking the Wisdom of Crowds Through Challenge‐Based Competitions in Biomedical Research , 2013, Clinical pharmacology and therapeutics.

[46]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[47]  Adam A. Margolin,et al.  Systematic Analysis of Challenge-Driven Improvements in Molecular Prognostic Models for Breast Cancer , 2013, Science Translational Medicine.

[48]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[49]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[50]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[51]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[52]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[53]  A. Butte,et al.  Leveraging models of cell regulation and GWAS data in integrative network-based association studies , 2012, Nature Genetics.

[54]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[55]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[56]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[57]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[58]  A. Bordbar,et al.  Using the reconstructed genome‐scale human metabolic network to study physiology and pathology , 2012, Journal of internal medicine.

[59]  Geoffrey E. Hinton,et al.  Transforming Auto-Encoders , 2011, ICANN.

[60]  D. Pe’er,et al.  Principles and Strategies for Developing Network Models in Cancer , 2011, Cell.

[61]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[62]  Riet De Smet,et al.  Advantages and limitations of current network inference methods , 2010, Nature Reviews Microbiology.

[63]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[64]  H. Abdi,et al.  Principal component analysis , 2010 .

[65]  A. Fuente,et al.  From ‘differential expression’ to ‘differential networking’ – identification of dysfunctional regulatory networks in diseases , 2010 .

[66]  John B. O. Mitchell,et al.  A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking , 2010, Bioinform..

[67]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[68]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[69]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[70]  Shankar Mukherji,et al.  Synthetic biology: understanding biological design from synthetic circuits , 2009, Nature Reviews Genetics.

[71]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[72]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[73]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[74]  K. Sirotkin,et al.  The NCBI dbGaP database of genotypes and phenotypes , 2007, Nature Genetics.

[75]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[76]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[77]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[78]  E. Schadt,et al.  Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes Published, JLR Papers in Press, October 1, 2006. , 2006, Journal of Lipid Research.

[79]  R. Shoemaker The NCI60 human tumour cell line anticancer drug screen , 2006, Nature Reviews Cancer.

[80]  Aldons J. Lusis,et al.  A thematic review series: systems biology approaches to metabolic and cardiovascular disorders , 2006, Journal of Lipid Research.

[81]  David S. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[82]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[83]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[84]  J. Collins,et al.  Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks , 2005, Nature Biotechnology.

[85]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[86]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[87]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[88]  Rich Caruana,et al.  Multitask Learning , 1997, Machine Learning.

[89]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[90]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[91]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[92]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[93]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[94]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[95]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[96]  A. C. Rencher Methods of multivariate analysis , 1995 .

[97]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[98]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[99]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[100]  D Weininger,et al.  SMILES: a line notation and computerized interpreter for chemical structures. , 1987 .

[101]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[102]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .