Photodissociation of isomeric dichloroethylenes in the ultraviolet: Effect of the second chlorine atom substitution on the dynamics

[1]  P. Das,et al.  Photodissociation Dynamics of CH2ICl at 222, 236, 266, 280, and ∼304 nm† , 2002 .

[2]  Phillip A. Cook,et al.  Spin–orbit branching in Cl(2P) atoms produced by ultraviolet photodissociation of HCl , 1999 .

[3]  R. Field,et al.  Electronic control of the spin–orbit branching ratio in the photodissociation and predissociation of HCl , 1995 .

[4]  M. Kawasaki,et al.  Mechanism of the ultraviolet photodissociation of chloroethylenes determined from the Doppler profiles, spatial anisotropy, and power dependence of the photofragments , 1992 .

[5]  U. Nagashima,et al.  Photofragmentation of mono‐ and dichloroethylenes: Translational energy measurements of recoiling Cl and HCl fragments , 1985 .

[6]  S. Arepalli,et al.  Detection of Cl atoms and HCl molecules by resonantly enhanced multiphoton ionization , 1985 .

[7]  J. D. Mcdonald,et al.  Infrared emission spectroscopy of the products of UV‐dissociated chloroethylenes , 1981 .

[8]  L. F. Phillips Numerical studies of the growth and decay of resonance fluorescence: Trapping and quenching of argon 106.7 nm fluorescence , 1976 .

[9]  M. Wijnen,et al.  Primary steps in the photolysis of cis‐1,2‐dichloroethylene , 1975 .

[10]  M. Berry The chloroethylene photochemical lasers: Vibrational energy content of the HCl molecular elimination products , 1974, IEEE Journal of Quantum Electronics.

[11]  M. Wijnen,et al.  The primary process in the photolysis of trans- 1,2-C2H2Cl2 , 1975 .

[12]  W. Tyerman Flash photolysis of haloethylenes. Formation of CCl from 1 : 1-dichloroethylenes , 1969 .