The Lanczos and conjugate gradient algorithms in finite precision arithmetic
暂无分享,去创建一个
[1] É. Christoffel,et al. Sur une classe particulière de fonctions entières et de fractions continues , 2022 .
[2] G. Darboux,et al. Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .
[3] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[4] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[5] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[6] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[7] V. Fridman,et al. The method of minimum iterations with minimum errors for a system of linear algebraic equations with a symmetrical matrix , 1963 .
[8] G. Meinardus,et al. Über eine Verallgemeinerung einer Ungleichung von L. V. Kantorowitsch , 1963 .
[9] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[10] THE THEORY OF MATRICES IN NUMERICAL ANALYSIS , 1965 .
[11] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[12] S. Kaniel. Estimates for Some Computational Techniques - in Linear Algebra , 1966 .
[13] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[14] J. Daniel. The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .
[15] W. Gautschi. Construction of Gauss-Christoffel quadrature formulas , 1968 .
[16] R. C. Thompson,et al. Principal submatrices II: the upper and lower quadratic inequalities☆ , 1968 .
[17] D. Luenberger. Hyperbolic Pairs in the Method of Conjugate Gradients , 1969 .
[18] Christopher C. Paige,et al. Practical use of the symmetric Lanczos process with re-orthogonalization , 1970 .
[19] D. Luenberger. The Conjugate Residual Method for Constrained Minimization Problems , 1970 .
[20] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[21] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[22] G. Golub,et al. Bounds for the error of linear systems of equations using the theory of moments , 1972 .
[23] Christopher C. Paige,et al. Eigenvalues of perturbed Hermitian matrices , 1974 .
[24] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[25] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[26] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[27] J. G. Lewis. Algorithms for sparse matrix eigenvalue problems , 1977 .
[28] H Woźniakowski. Round-off error analysis of iterations for large linear systems , 1977 .
[29] A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm , 1979 .
[30] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[31] D. S. Scott,et al. How to make the Lanczos algorithm converge slowly , 1979 .
[32] G. Golub,et al. Bounds for the error in linear systems , 1979 .
[33] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[34] Henryk Woźniakowski. Roundoff-error analysis of a new class of conjugate-gradient algorithms , 1980 .
[35] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[36] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[37] J. Bollen. Round-off error analysis of descent methods for solving linear equations , 1980 .
[38] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[39] J. Grcar. Analyses of the lanczos algorithm and of the approximation problem in richardson's method , 1981 .
[40] Anne Greenbaum. Convergence properties of the conjugate gradient algorithm in exact and finite precision arithmetic , 1981 .
[41] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .
[42] H. Simon. The lanczos algorithm for solving symmetric linear systems , 1982 .
[43] Josef Stoer,et al. Solution of Large Linear Systems of Equations by Conjugate Gradient Type Methods , 1982, ISMP.
[44] Gene H. Golub,et al. On the calculation of Jacobi Matrices , 1983 .
[45] W. Gragg,et al. The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .
[46] H. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .
[47] F. R. Gantmakher. The Theory of Matrices , 1984 .
[48] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[49] Jo A. Bollen. Numerical stability of descent methods for solving linear equations , 1984 .
[50] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[51] W. Gautschi. Orthogonal polynomials-Constructive theory and applications * , 1985 .
[52] O. Axelsson,et al. On the rate of convergence of the preconditioned conjugate gradient method , 1986 .
[53] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[54] H. V. D. Vorst,et al. The convergence behavior of ritz values in the presence of close eigenvalues , 1987 .
[55] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[56] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[57] Beresford N. Parlett. The contribution of J. H. Wilkinson to numerical analysis , 1990 .
[58] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[59] G. Golub,et al. Quadratically constrained least squares and quadratic problems , 1991 .
[60] Z. Strakos,et al. On the real convergence rate of the conjugate gradient method , 1991 .
[61] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[62] Zdeněk Strakoš,et al. Open questions in the convergence analysis of the lanczos process for the real symmetric eigenvalue problem , 1992 .
[63] L. Knizhnerman,et al. Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices and eigenvalues , 1992 .
[64] P. Deuflhard. Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .
[65] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[66] L. Knizhnerman. The quality of approximations to an isolated eigenvalue and the distribution of “Ritz numbers” in the sample Lanczos procedure , 1995 .
[67] Qiang Ye. On close eigenvalues of tridiagonal matrices , 1995 .
[68] B. Parlett. Do We Fully Understand the Symmetric Lanczos Algorithm Yet , 1995 .
[69] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[70] L. Knizhnerman. The simple Lanczos procedure: estimates of the error of the Gauss quadrature formula and their applications , 1996 .
[71] Beresford N. Parlett,et al. Invariant subspaces for tightly clustered eigenvalues of tridiagonals , 1996 .
[72] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[73] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[74] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[75] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[76] G. W. Stewart,et al. Matrix algorithms , 1998 .
[77] Å. Björck,et al. Stability of Conjugate Gradient and Lanczos Methods for Linear Least Squares Problems , 1998, SIAM J. Matrix Anal. Appl..
[78] Anne Greenbaum,et al. Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..
[79] Accuracy of two three-term and three two-term recurrences for Krylov space solvers , 1999 .
[80] Gene H. Golub,et al. On Some Eigenvector-Eigenvalue Relations , 1999, SIAM J. Matrix Anal. Appl..
[81] Dirk P. Laurie. Accurate recovery of recursion coe cients from Gaussian quadrature formulas , 1999 .
[82] G. Meurant. Computer Solution of Large Linear Systems , 1999 .
[83] B. Parlett,et al. Relatively robust representations of symmetric tridiagonals , 2000 .
[84] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[85] Dirk Laurie,et al. Computation of Gauss-type quadrature formulas , 2001 .
[86] Owe Axelsson,et al. Error norm estimation and stopping criteria in preconditioned conjugate gradient iterations , 2001, Numer. Linear Algebra Appl..
[87] M. Arioli,et al. Stopping criteria for iterative methods:¶applications to PDE's , 2001 .
[88] Michael L. Overton,et al. Numerical Computing with IEEE Floating Point Arithmetic , 2001 .
[89] G. Sleijpen,et al. Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..
[90] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[91] Walter Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .
[92] Arieh Iserles,et al. On the Foundations of Computational Mathematics , 2001 .
[93] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[94] Arno B. J. Kuijlaars,et al. Superlinear CG convergence for special right-hand sides , 2002 .
[95] W. Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .
[96] Jens-Peter M. Zemke,et al. Krylov Subspace Methods in Finite Precision : A Unified Approach , 2003 .
[97] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[98] Gérard Meurant. The computation of bounds for the norm of the error in the conjugate gradient algorithm , 2004, Numerical Algorithms.
[99] Gérard Meurant,et al. Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.
[100] David M. Young,et al. Applied Iterative Methods , 2004 .
[101] M. Arioli,et al. A stopping criterion for the conjugate gradient algorithm in a finite element method framework , 2000, Numerische Mathematik.
[102] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[103] B. Parlett,et al. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .
[104] Serena Morigi,et al. Computable error bounds and estimates for the conjugate gradient method , 2000, Numerical Algorithms.
[105] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[106] JÖRG LIESEN,et al. ON THE WORST-CASE CONVERGENCE OF MR AND CG FOR SYMMETRIC POSITIVE DEFINITE TRIDIAGONAL TOEPLITZ MATRICES , 2005 .
[107] Valérie Frayssé,et al. Inexact Matrix-Vector Products in Krylov Methods for Solving Linear Systems: A Relaxation Strategy , 2005, SIAM J. Matrix Anal. Appl..
[108] W. Wülling,et al. The Stabilization of Weights in the Lanczos and Conjugate Gradient Method , 2005 .
[109] Gérard Meurant. Estimates of the l2 norm of the error in the conjugate gradient algorithm , 2005, Numerical Algorithms.
[110] Numerische,et al. On the convergence rate of the conjugate gradients in presence of rounding errors * , 2005 .
[111] Liliana Borcea,et al. On the sensitivity of Lanczos recursions to the spectrum , 2005 .
[112] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[113] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[114] Wolfgang Wülling. On Stabilization and Convergence of Clustered Ritz Values in the Lanczos Method , 2005, SIAM J. Matrix Anal. Appl..
[115] Z. Strakos,et al. On numerical stability in large scale linear algebraic computations , 2005 .
[116] Arno B. J. Kuijlaars,et al. Convergence Analysis of Krylov Subspace Iterations with Methods from Potential Theory , 2006, SIAM Rev..
[117] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[118] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[119] Petr Tichý,et al. On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.
[120] Gene H. Golub,et al. Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.
[121] Ren-Cang Li,et al. On Meinardus' examples for the conjugate gradient method , 2008, Math. Comput..
[122] G. Meurant. The Lanczos and conjugate gradient algorithms , 2008 .
[123] Z. Strakos,et al. ON SENSITIVITY OF GAUSS-CHRISTOFFEL QUADRATURE ESTIMATES∗ , 2022 .