Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula.

[1]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[2]  F. Medeiros,et al.  The Relationship between Visual Field Index and Estimated Number of Retinal Ganglion Cells in Glaucoma , 2013, PloS one.

[3]  T. Wong,et al.  Relationship between ganglion cell-inner plexiform layer and optic disc/retinal nerve fibre layer parameters in non-glaucomatous eyes , 2013, British Journal of Ophthalmology.

[4]  Ji-Jie Pang,et al.  Survey on amacrine cells coupling to retrograde-identified ganglion cells in the mouse retina. , 2013, Investigative ophthalmology & visual science.

[5]  Robert N Weinreb,et al.  Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. , 2013, Investigative ophthalmology & visual science.

[6]  Robert N Weinreb,et al.  The relationship between cup-to-disc ratio and estimated number of retinal ganglion cells. , 2013, Investigative ophthalmology & visual science.

[7]  F. Medeiros,et al.  Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. , 2013, Ophthalmology.

[8]  M. Nicolela,et al.  Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. , 2013, Ophthalmology.

[9]  Donald C. Hood,et al.  Glaucomatous damage of the macula , 2013, Progress in Retinal and Eye Research.

[10]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[11]  R. Knighton,et al.  The shape of the ganglion cell plus inner plexiform layers of the normal human macula. , 2012, Investigative ophthalmology & visual science.

[12]  F. Medeiros,et al.  A combined index of structure and function for staging glaucomatous damage. , 2012, Archives of ophthalmology.

[13]  Jean-Claude Mwanza,et al.  Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. , 2012, Ophthalmology.

[14]  W. Swanson,et al.  ‘Structure–function relationship’ in glaucoma: past thinking and current concepts , 2012, Clinical & experimental ophthalmology.

[15]  Robert N Weinreb,et al.  Estimating the rate of retinal ganglion cell loss in glaucoma. , 2012, American journal of ophthalmology.

[16]  W. Feuer,et al.  Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. , 2011, Investigative ophthalmology & visual science.

[17]  S. Ohkubo,et al.  Evaluation of Macular Thickness and Peripapillary Retinal Nerve Fiber Layer Thickness for Detection of Early Glaucoma Using Spectral Domain Optical Coherence Tomography , 2011, Journal of glaucoma.

[18]  M. Hangai,et al.  Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[19]  F. Medeiros,et al.  Effect of disease severity and optic disc size on diagnostic accuracy of RTVue spectral domain optical coherence tomograph in glaucoma. , 2011, Investigative ophthalmology & visual science.

[20]  Robert Ritch,et al.  Initial arcuate defects within the central 10 degrees in glaucoma. , 2011, Investigative ophthalmology & visual science.

[21]  R. Anderson,et al.  Sensitivity loss in early glaucoma can be mapped to an enlargement of the area of complete spatial summation. , 2010, Investigative ophthalmology & visual science.

[22]  Robert N Weinreb,et al.  Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. , 2010, Ophthalmology.

[23]  Eun Suk Lee,et al.  Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia , 2010, British Journal of Ophthalmology.

[24]  Robert N Weinreb,et al.  African Descent and Glaucoma Evaluation Study (ADAGES): III. Ancestry differences in visual function in healthy eyes. , 2010, Archives of ophthalmology.

[25]  Sung Yong Kang,et al.  Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. , 2010, Investigative ophthalmology & visual science.

[26]  G. Wollstein,et al.  Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. , 2009, Ophthalmology.

[27]  Robert N Weinreb,et al.  The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data. , 2009, Archives of ophthalmology.

[28]  Robert N Weinreb,et al.  Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. , 2008, Ophthalmology.

[29]  F. Medeiros,et al.  A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. , 2006, Investigative ophthalmology & visual science.

[30]  J. Crowston,et al.  Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. , 2005, Archives of ophthalmology.

[31]  Margaret Sullivan Pepe,et al.  Distribution-free ROC analysis using binary regression techniques. , 2002, Biostatistics.

[32]  F. Fitzke,et al.  Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. , 2000, Investigative ophthalmology & visual science.

[33]  R L Williams,et al.  A Note on Robust Variance Estimation for Cluster‐Correlated Data , 2000, Biometrics.

[34]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[35]  H. Jampel,et al.  Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. , 1998, Ophthalmology.

[36]  H. Kolb,et al.  Neurons of the human retina: A Golgi study , 1992, The Journal of comparative neurology.

[37]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[38]  J. Provis,et al.  A distinctive soma size gradient among catecholaminergic neurones of human retinae , 1990, Brain Research.

[39]  D B Henson,et al.  Frequency Distribution of Early Glaucomatous Visual Field Defects , 1986, American journal of optometry and physiological optics.

[40]  D. R. Anderson,et al.  Early foveal involvement and generalized depression of the visual field in glaucoma. , 1984, Archives of ophthalmology.

[41]  Werner Eb,et al.  Location of early glaucomatous visual field defects. , 1980 .

[42]  G. Holló,et al.  Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma , 2011, Eye.

[43]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[44]  E. Werner,et al.  Location of early glaucomatous visual field defects. , 1980, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[45]  Samantha McGinnigle,et al.  Linking structure and function in glaucoma , 2022 .