Reoptimization procedures in shortest path problem

In most algorithms for Transportation and Communication Models a sequence of Shortest Path Problems must be solved, where each problem is only slightly different from the preceding. Computational procedures are proposed to find the new shortest paths starting from the old shortest paths in two cases: i) the node from which the shortest paths are to be determined is changed; ii) the cost of one are is modified (either increased or decreased).RiassuntoIn molti modelli di sistemi di trasporto e di comunicazione, gli algoritmi utilizzati richiedono la successiva soluzione di diversi problemi di ricerca di cammini minimi, tali che ciascun problema differisce solo di poco dal precedente. Nel presente lavoro vengono presentate delle procedure che consentono di determinare i nuovi cammini minimi, a partire da quelli precedentemente trovati, in due distinti casi: 1) il nodo origine dei cammini minimi da determinare è stato cambiato; 2) il costo di un arco è stato modificato (o in aumento oppure in diminuzione).

[1]  Sang Nguyen,et al.  A Unified Approach to Equilibrium Methods for Traffic Assignment , 1976 .

[2]  E. Denardo,et al.  Shortest-Route Methods: 1. Reaching, Pruning, and Buckets , 1979, Oper. Res..

[3]  G. Nemhauser A generalized permanent label setting algorithm for the shortest path between specified nodes , 1972 .

[4]  F. Glover,et al.  A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees , 1979, Networks.

[5]  John David Murchland,et al.  A fixed matrix method for all shortest distances in a directed graph and for the inverse problem , 1970 .

[6]  Michael Florian An improved linear approximation algorithm for the network equilibrium (packet switching) problem , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[7]  Dirck Van Vliet,et al.  IMPROVED SHORTEST PATH ALGORITHMS FOR TRANSPORT NETWORKS , 1978 .

[8]  G. Dantzig On the Shortest Route Through a Network , 1960 .

[9]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[10]  Norman Zadeh,et al.  On building minimum cost communication networks , 1973, Networks.

[11]  Bernard Yaged,et al.  Minimum cost routing for static network models , 1971, Networks.

[12]  M. S. Bazaraa,et al.  A Dual Shortest Path Algorithm , 1974 .

[13]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.