25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation

The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed. Because the carrier photoexcitation recombination lengths are typically 10 nm in these disordered materials, the length scale for self-assembly must be of order 10-20 nm. Experiments have verified the existence of the BHJ nanostructure, but the morphology remains complex and a limiting factor. Three steps are required for generation of electrical power: i) absorption of photons from the sun; ii) photoinduced charge separation and the generation of mobile carriers; iii) collection of electrons and holes at opposite electrodes. The ultrafast charge transfer process arises from fundamental quantum uncertainty; mobile carriers are directly generated (electrons in the acceptor domains and holes in the donor domains) by the ultrafast charge transfer (≈70%) with ≈30% generated by exciton diffusion to a charge separating heterojunction. Sweep-out of the mobile carriers by the internal field prior to recombination is essential for high performance. Bimolecular recombination dominates in materials where the donor and acceptor phases are pure. Impurities degrade performance by introducing Shockly-Read-Hall decay. The review concludes with a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell.

[1]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[2]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[3]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[4]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[5]  Wei Lin Leong,et al.  Role of trace impurities in the photovoltaic performance of solution processed small-molecule bulk heterojunction solar cells , 2012 .

[6]  Martin Kumar Patel,et al.  Ex‐ante environmental and economic evaluation of polymer photovoltaics , 2009 .

[7]  Gregory C. Welch,et al.  Photoinduced charge generation in a molecular bulk heterojunction material. , 2012, Journal of the American Chemical Society.

[8]  Gregory C. Welch,et al.  Influence of Processing Additives on Charge-Transfer Time Scales and Sound Velocity in Organic Bulk Heterojunction Films. , 2012, The journal of physical chemistry letters.

[9]  D. Blank,et al.  Correlated exciton relaxation in Poly(3-hexylthiophene). , 2008, Physical review letters.

[10]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[11]  A. Heeger,et al.  Enhanced Efficiency Parameters of Solution‐Processable Small‐Molecule Solar Cells Depending on ITO Sheet Resistance , 2013 .

[12]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[13]  Zhenan Bao,et al.  The Phase Behavior of a Polymer-Fullerene Bulk Heterojunction System that Contains Bimolecular Crystals , 2011 .

[14]  D. Moses,et al.  Ultrafast photogeneration of charged polarons in conjugated polymers , 2001 .

[15]  Robert P. H. Chang,et al.  Polymer solar cells with enhanced fill factors , 2013, Nature Photonics.

[16]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[17]  Shinuk Cho,et al.  Effect of processing additive on the nanomorphology of a bulk heterojunction material. , 2010, Nano letters.

[18]  Jae Kwan Lee,et al.  "Columnlike" structure of the cross-sectional morphology of bulk heterojunction materials. , 2009, Nano letters.

[19]  G. Scholes,et al.  Photon-echo studies of collective absorption and dynamic localization of excitation in conjugated polymers and oligomers , 2005 .

[20]  Robert A. Street,et al.  Experimental test for geminate recombination applied to organic solar cells , 2010 .

[21]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[22]  Antonio Facchetti,et al.  Polymer donor–polymer acceptor (all-polymer) solar cells , 2013 .

[23]  J. Moon,et al.  Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. , 2011, Nano letters.

[24]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[25]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[26]  A. Heeger,et al.  Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. , 2013, Nano letters.

[27]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[28]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[29]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[30]  Alan J. Heeger,et al.  Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells , 2013, Scientific Reports.

[31]  Alan J. Heeger,et al.  Identifying a Threshold Impurity Level for Organic Solar Cells: Enhanced First‐Order Recombination Via Well‐Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells , 2011 .

[32]  Daniel Moses,et al.  Bulk Heterojunction Solar Cells with Large Open‐Circuit Voltage: Electron Transfer with Small Donor‐Acceptor Energy Offset , 2011, Advanced materials.

[33]  Daniel Moses,et al.  Coherence and Uncertainty in Nanostructured Organic Photovoltaics , 2013 .

[34]  Robert A. Street,et al.  Transient photoconductivity in polymer bulk heterojunction solar cells: Competition between sweep-out and recombination , 2011 .

[35]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[36]  Daniel Moses,et al.  Ultrafast photoinduced electron transfer in conducting polymer—buckminsterfullerene composites , 1993 .

[37]  B. Collins,et al.  Molecular Miscibility of Polymer-Fullerene Blends , 2010 .

[38]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[39]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[40]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[41]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[42]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[43]  Yuan Zhang,et al.  A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices , 2011 .