Multivariate Control Charts from a Data Mining Perspective

This chapter aims at presenting our data mining vision on Statistical Process Control (SPC) analysis, specifically on the design of multivariate control charts for individual observations in the case of independent data and continuous variables. We first argue why the classic multivariate SPC tool, namely the Hotelling T 2 chart, might not be appropriate for large data sets, and then we provide an up-to-date critical review of the methods suitable for dealing with data mining issues in control chart design. In order to address new SPC issues such as the presence of multiple outliers and incorrect model assumptions in the context of large data sets, we suggest exploitation of some multivariate nonparametric statistical methods. In a model-free environment, we present the way we handle large data sets: a multivariate control scheme based on the data depth approach. We first present the general framework, and then our specific idea on how to design a proper control chart. There follows an example, a simulation study, and some remarks on the choice of the depth function from a data mining perspective. A brief discussion of some open issues in data mining SPC closes the chapter.

[1]  David L. Woodruff,et al.  Identification of Outliers in Multivariate Data , 1996 .

[2]  Do Sun Bai,et al.  A Multivariate T2 Control Chart for Skewed Populations Using Weighted Standard Deviations , 2004 .

[3]  Xue Z. Wang,et al.  Multidimensional visualisation for process historical data analysis: a comparative study with multivariate statistical process control , 2005 .

[4]  Philippe Castagliola,et al.  Autocorrelated SPC for Non‐Normal Situations , 2005 .

[5]  Giancarlo Ragozini,et al.  Exploring the Periphery of Data Scatters: Are There Outliers? , 2000 .

[6]  Peihua Qiu,et al.  A Rank-Based Multivariate CUSUM Procedure , 2001, Technometrics.

[7]  Richard L. Marcellus Performance Measures for ―X Charts with Asymmetric Control Limits , 2006, Qual. Reliab. Eng. Int..

[8]  Regina Y. Liu,et al.  DDMA-charts: Nonparametric multivariate moving average control charts based on data depth , 2004 .

[9]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[10]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[11]  M. Hill,et al.  Nonlinear Multivariate Analysis. , 1990 .

[12]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[13]  A. Atkinson Fast Very Robust Methods for the Detection of Multiple Outliers , 1994 .

[14]  John C. Young,et al.  Multivariate statistical process control with industrial applications , 2002, ASA-SIAM series on statistics and applied probability.

[15]  P. Rousseeuw,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .

[16]  David J. Sandoz,et al.  The application of principal component analysis and kernel density estimation to enhance process monitoring , 2000 .

[17]  A. Hadi A Modification of a Method for the Detection of Outliers in Multivariate Samples , 1994 .

[18]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .

[19]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[20]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[21]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[22]  Giancarlo Ragozini,et al.  Visually Mining Off‐line Data for Quality Improvement , 2003 .

[23]  Tai-Yue Wang,et al.  Artificial neural networks to classify mean shifts from multivariate χ2 chart signals , 2004, Comput. Ind. Eng..

[24]  N. José Alberto Vargas,et al.  Robust Estimation in Multivariate Control Charts for Individual Observations , 2003 .

[25]  Smiley W. Cheng,et al.  Single Variables Control Charts: an Overview , 2006, Qual. Reliab. Eng. Int..

[26]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[27]  R. Serfling,et al.  Structural properties and convergence results for contours of sample statistical depth functions , 2000 .

[28]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[29]  William H. Woodall,et al.  A Comparison of Multivariate Control Charts for Individual Observations , 1996 .

[30]  Theodore Johnson,et al.  Exploratory Data Mining and Data Cleaning , 2003 .

[31]  Alan M. Polansky,et al.  A General Framework for Constructing Control Charts , 2005 .

[32]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[33]  A. J. Morris,et al.  Non-linear principal components analysis for process fault detection , 1998 .

[34]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[35]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[36]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[37]  William H. Woodall,et al.  High breakdown estimation methods for Phase I multivariate control charts , 2007, Qual. Reliab. Eng. Int..

[38]  A. J. Morris,et al.  Non-parametric confidence bounds for process performance monitoring charts☆ , 1996 .