Multilevel Estimation of Normalization Constants Using the Ensemble Kalman-Bucy Filter

In this article we consider the application of multilevel Monte Carlo, for the estimation of normalizing constants. In particular we will make use of the filtering algorithm, the ensemble Kalman–Bucy filter (EnKBF), which is an N -particle representation of the Kalman–Bucy filter (KBF). The EnKBF is of interest as it coincides with the optimal filter in the continuous-linear setting, i.e. the KBF. This motivates our particular setup in the linear setting. The resulting methodology we will use is the multilevel ensemble Kalman–Bucy filter (MLEnKBF). We provide an analysis based on deriving Lqbounds for the normalizing constants using both the single-level, and the multilevel algorithms. Our results will be highlighted through numerical results, where we firstly demonstrate the error-to-cost rates of the MLEnKBF comparing it to the EnKBF on a linear Gaussian model. Our analysis will be specific to one variant of the MLEnKBF, whereas the numerics will be tested on different variants. We also exploit this methodology for parameter estimation, where we test this on the models arising in atmospheric sciences, such as the stochastic Lorenz 63 and 96 model.

[1]  Nick Whiteley,et al.  An Algorithm for Approximating the Second Moment of the Normalizing Constant Estimate from a Particle Filter , 2016 .

[2]  Sumeetpal S. Singh,et al.  Forward Smoothing using Sequential Monte Carlo , 2010, 1012.5390.

[3]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[4]  Pierre E. Jacob,et al.  Unbiased estimation of log normalizing constants with applications to Bayesian cross-validation , 2018, 1810.01382.

[5]  P. Moral,et al.  A non asymptotic variance theorem for unnormalized Feynman-Kac particle models , 2008 .

[6]  Matti Vihola,et al.  Unbiased Estimators and Multilevel Monte Carlo , 2015, Oper. Res..

[7]  Hamza M. Ruzayqat,et al.  Log-normalization constant estimation using the ensemble Kalman–Bucy filter with application to high-dimensional models , 2021, Advances in Applied Probability.

[8]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[9]  Ning Liu,et al.  Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .

[10]  Ari Arapostathis,et al.  Analysis of an identification algorithm arising in the adaptive estimation of Markov chains , 1985, 1985 24th IEEE Conference on Decision and Control.

[11]  J. Stoyanov The Oxford Handbook of Nonlinear Filtering , 2012 .

[12]  Brian Jefferies Feynman-Kac Formulae , 1996 .

[13]  Trond Mannseth,et al.  Assessment of multilevel ensemble-based data assimilation for reservoir history matching , 2019, Computational Geosciences.

[14]  Yan Zhou,et al.  Multilevel Sequential Monte Carlo Samplers for Normalizing Constants , 2016, ACM Trans. Model. Comput. Simul..

[15]  Raul Tempone,et al.  Multilevel ensemble Kalman filtering for spatio-temporal processes , 2017, Numerische Mathematik.

[16]  Yan Zhou,et al.  Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..

[17]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[18]  Pierre Del Moral,et al.  On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters , 2016, 1605.09329.

[19]  Matti Vihola,et al.  Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions , 2018, SIAM/ASA J. Uncertain. Quantification.

[20]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[21]  Pierre Del Moral,et al.  On the Stability of Kalman-Bucy Diffusion Processes , 2016, SIAM J. Control. Optim..

[22]  Hrakon Hoel,et al.  Multi-index ensemble Kalman filtering , 2021, ArXiv.

[23]  Neil K. Chada,et al.  Multilevel Ensemble Kalman-Bucy Filters , 2020, SIAM/ASA J. Uncertain. Quantification.

[24]  R. Bhar Stochastic filtering with applications in finance , 2010 .

[25]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[26]  Andrew J. Majda,et al.  Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .

[27]  Kody J. H. Law,et al.  Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..

[28]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[29]  P. Moral,et al.  On the Mathematical Theory of Ensemble (Linear-Gaussian) Kalman-Bucy Filtering , 2020, 2006.08843.

[30]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[31]  Alexandros Beskos,et al.  Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models , 2021, SIAM J. Sci. Comput..

[32]  Alain Durmus,et al.  Normalizing constants of log-concave densities , 2017, 1707.00460.

[33]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[34]  Yan Zhou,et al.  Multilevel particle filters: normalizing constant estimation , 2016, Stat. Comput..