Calculating the precision of tilt-to-length coupling estimation and noise subtraction in LISA using Fisher information
暂无分享,去创建一个
[1] T. Ziegler,et al. LISA spacecraft maneuver design to estimate tilt-to-length noise during gravitational wave events , 2022, Physical Review D.
[2] S. Schuster,et al. Geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions , 2022, Journal of Optics.
[3] M. Muratore,et al. Time delay interferometry combinations as instrument noise monitors for LISA , 2021, Physical Review D.
[4] Ulrich Johann,et al. LISA optical metrology: tilt-to-pathlength coupling effects on the picometer scale , 2021, International Conference on Space Optics.
[5] G. Mueller,et al. Analytic HG-mode propagation through circular apertures with Zernike phase offset , 2020 .
[6] T. S. Schwarze,et al. Optical Suppression of Tilt-to-Length Coupling in the LISA Long-Arm Interferometer , 2020, Physical Review Applied.
[7] Robert Eliot Spero,et al. The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky , 2019, 1907.06482.
[8] David Robertson,et al. LISA Pathfinder platform stability and drag-free performance , 2018, Physical Review D.
[9] J. Gair,et al. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.
[10] J. P. López-Zaragoza,et al. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.
[11] H. Inchauspe,et al. Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors , 2015, 1511.09198.
[12] Claudia Biermann,et al. Mathematical Methods Of Statistics , 2016 .
[13] M. Otto. Time-delay interferometry simulations for the laser interferometer space antenna , 2015 .
[14] K. Danzmann,et al. Data series subtraction with unknown and unmodeled background noise , 2014, 1404.4792.
[15] Shu-Fan Wu,et al. Attitude and orbit control systems for the LISA Pathfinder mission , 2013 .
[16] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[17] B. Schutz. 29pXD-1 Science Frontiers of the World-Wide Gravitational Wave Network : Max Planck Institute for Gravitational Physics , 2009 .
[18] M. Vallisneri. Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.
[19] Report on the second Mock LISA Data Challenge , 2007, 0711.2667.
[20] C. Will,et al. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.
[21] Massimo Tinto,et al. Time delay interferometry , 2003, Living Reviews in Relativity.
[22] M. Vallisneri. Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.
[23] Daniel A. Shaddock,et al. Data Combinations Accounting for LISA Spacecraft Motion , 2003, gr-qc/0307080.
[24] N. Cornish,et al. The effects of orbital motion on LISA time delay interferometry , 2003, gr-qc/0306096.
[25] John W. Armstrong,et al. Time-delay interferometry for LISA , 2002 .
[26] J. Armstrong,et al. Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .
[27] Introduction to the Analysis of Low-Frequency Gravitational Wave Data , 1997, gr-qc/9710080.
[28] B. J. Meers,et al. Automatic alignment of optical interferometers. , 1994, Applied optics.
[29] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[30] N. L. Johnson,et al. Breakthroughs in Statistics , 1992 .
[31] R. Fisher,et al. On the Mathematical Foundations of Theoretical Statistics , 1922 .