Calculating the precision of tilt-to-length coupling estimation and noise subtraction in LISA using Fisher information

Tilt-to-length (TTL) noise from angular jitter in LISA is projected to be the dominant noise source in the milli-Hertz band unless corrected in post-processing. The correction is only possible after removing the overwhelming laser phase noise using time-delay interferometry (TDI). We present here a frequency domain model that describes the effect of angular motion of all three spacecraft on the interferometric signals after propagating through TDI. We then apply a Fisher information matrix analysis to this model to calculate the minimum uncertainty with which TTL coupling coefficients may be estimated. Furthermore, we show the impact of these uncertainties on the residual TTL noise in the gravitational wave readout channel, and compare it to the impact of the angular witness sensors’ readout noise. We show that the residual TTL noise post-subtraction in the TDI variables for a case using the LISA angular jitter requirement and integration time of one day is limited to the 8 pm/ √ Hz level by angular sensing noise. However, using a more realistic model for the angular jitter we find that the TTL coupling uncertainties are 70 times larger, and the noise subtraction is limited by these uncertainties to the 14 pm/ √ Hz level.

[1]  T. Ziegler,et al.  LISA spacecraft maneuver design to estimate tilt-to-length noise during gravitational wave events , 2022, Physical Review D.

[2]  S. Schuster,et al.  Geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions , 2022, Journal of Optics.

[3]  M. Muratore,et al.  Time delay interferometry combinations as instrument noise monitors for LISA , 2021, Physical Review D.

[4]  Ulrich Johann,et al.  LISA optical metrology: tilt-to-pathlength coupling effects on the picometer scale , 2021, International Conference on Space Optics.

[5]  G. Mueller,et al.  Analytic HG-mode propagation through circular apertures with Zernike phase offset , 2020 .

[6]  T. S. Schwarze,et al.  Optical Suppression of Tilt-to-Length Coupling in the LISA Long-Arm Interferometer , 2020, Physical Review Applied.

[7]  Robert Eliot Spero,et al.  The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky , 2019, 1907.06482.

[8]  David Robertson,et al.  LISA Pathfinder platform stability and drag-free performance , 2018, Physical Review D.

[9]  J. Gair,et al.  Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.

[10]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[11]  H. Inchauspe,et al.  Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors , 2015, 1511.09198.

[12]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[13]  M. Otto Time-delay interferometry simulations for the laser interferometer space antenna , 2015 .

[14]  K. Danzmann,et al.  Data series subtraction with unknown and unmodeled background noise , 2014, 1404.4792.

[15]  Shu-Fan Wu,et al.  Attitude and orbit control systems for the LISA Pathfinder mission , 2013 .

[16]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[17]  B. Schutz 29pXD-1 Science Frontiers of the World-Wide Gravitational Wave Network : Max Planck Institute for Gravitational Physics , 2009 .

[18]  M. Vallisneri Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.

[19]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[20]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[21]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[22]  M. Vallisneri Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.

[23]  Daniel A. Shaddock,et al.  Data Combinations Accounting for LISA Spacecraft Motion , 2003, gr-qc/0307080.

[24]  N. Cornish,et al.  The effects of orbital motion on LISA time delay interferometry , 2003, gr-qc/0306096.

[25]  John W. Armstrong,et al.  Time-delay interferometry for LISA , 2002 .

[26]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[27]  Introduction to the Analysis of Low-Frequency Gravitational Wave Data , 1997, gr-qc/9710080.

[28]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.

[29]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[30]  N. L. Johnson,et al.  Breakthroughs in Statistics , 1992 .

[31]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .