Universal method for computation of electrostatic potentials.

A computational approach to determine electrostatic interaction and gravitational potentials by performing direct numerical integration is presented. The potential is expanded using finite-element functions of arbitrary order. The method does not involve any solutions of systems of linear equations. The potential is instead obtained as a sum of differential contributions. Thus, no boundary conditions for the potential are needed. It is computationally efficient and well suited for parallel computers, since the innermost loops constitute matrix multiplications and the outer ones can be used as parallel indices. Without using prescreening or other computational tricks to speed up the calculation, the algorithm scales as N4/3 where N denotes the grid size.

[1]  J. A. McCammon,et al.  Solving the finite difference linearized Poisson‐Boltzmann equation: A comparison of relaxation and conjugate gradient methods , 1989 .

[2]  Pekka Pyykkö,et al.  Two-dimensional fully numerical solutions of molecular Hartree-Fock equations: LiH and BH , 1983 .

[3]  Richard A. Friesner,et al.  Numerical solution of the Poisson–Boltzmann equation using tetrahedral finite‐element meshes , 1997 .

[4]  J. Berthou,et al.  Tensorial Basis Spline Collocation Method for Poisson's Equation , 2000 .

[5]  S. Goedecker,et al.  Linear scaling solution of the coulomb problem using wavelets , 1997, physics/9701024.

[6]  Victor E. Malyshkin,et al.  Numerical Simulation of Self-Organisation in Gravitationally Unstable Media on Supercomputers , 2003, PaCT.

[7]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[8]  J. Kinoshita Simple Life Satisfies This Grad Student , 1996, Science.

[9]  Robert J. Harrison,et al.  Singular operators in multiwavelet bases , 2004, IBM J. Res. Dev..

[10]  Angel Rubio,et al.  Solution of Poisson's equation for finite systems using plane-wave methods , 2000, physics/0012024.

[11]  Michael J. Holst,et al.  The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers , 2001, IBM J. Res. Dev..

[12]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[13]  S. Bednarek,et al.  Modeling of electronic properties of electrostatic quantum dots , 2003 .

[14]  Leif Laaksonen,et al.  A Numerical Hartree-Fock Program for Diatomic Molecules , 1996 .

[15]  P. Politzer,et al.  Calculation of electrostatic and polarization energies from electron densities. , 2004, The Journal of chemical physics.

[16]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  James R. Chelikowsky,et al.  Electronic Structure Methods for Predicting the Properties of Materials: Grids in Space , 2000 .

[18]  A. Gavezzotti Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals , 2002 .

[19]  O Engkvist,et al.  Accurate Intermolecular Potentials Obtained from Molecular Wave Functions: Bridging the Gap between Quantum Chemistry and Molecular Simulations. , 2000, Chemical reviews.

[20]  R. W. Cheary,et al.  A fast and simple method for calculating electrostatic potentials , 1997 .

[21]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[22]  T. Torsti,et al.  Multigrid method for electronic structure calculations , 2001, cond-mat/0101233.

[23]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[24]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[25]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2000 .

[26]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[27]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[28]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[29]  Efthimios Kaxiras,et al.  ACRES: An Efficient Method for First-Principles Electronic Structure Calculations of Complex Systems , 2000 .

[30]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[31]  P. Matagne,et al.  Three-Dimensional Analysis of the Electronic Structure of Cylindrical Vertical Quantum Dots , 2002, Physical Models for Quantum Dots.

[32]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .