Transcendental numbers and diophantine approximations
暂无分享,去创建一个
[1] A. Baker. Imaginary quadratic fields with class number 2 , 1971 .
[2] H. Stark,et al. On a Fundamental Inequality in Number Theory , 1971 .
[3] H. Stark. A Transcendence Theorem for Class-Number Problems (II) , 1971 .
[4] W. W. Adams. Simultaneous Asymptotic Diophantine Approximations to a Basis of a Real Number Field , 1971, Nagoya Mathematical Journal.
[5] James Ax,et al. On Schanuel's Conjectures , 1971 .
[6] E. Bombieri. Algebraic values of meromorphic maps , 1970 .
[7] Wolfgang M. Schmidt,et al. Simultaneous approximation to algebraic numbers by rationals , 1970 .
[8] A. Baker. An Estimate for the ℘-Function at an Algebraic Point , 1970 .
[9] J. Coates,et al. Construction of rational functions on a curve , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] J. Coates,et al. Integer points on curves of genus 1 , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] S. Lang,et al. Analytic subgroups of group varieties , 1970 .
[12] R. F. Churchhouse,et al. Continued Fractions, Algebraic Numbers and Modular Invariants , 1969 .
[13] N. Fel'dman. An inequality for a linear form in the logarithms of algebraic numbers , 1969 .
[14] W. W. Adams. Simultaneous asymptotic diophantine approximations to a basic of a real cubic number field , 1969 .
[15] H. Stark. Shorter Notes: A Historical Note on Complex Quadratic Fields with Class- Number One , 1969 .
[16] A. Baker,et al. Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[17] N I Fel'dman,et al. IMPROVED ESTIMATE FOR A LINEAR FORM OF THE LOGARITHMS OF ALGEBRAIC NUMBERS , 1968 .
[18] W. W. Adams. A lower bound in asymptotic diophantine approximations , 1968 .
[19] N. Fel'dman. ESTIMATE FOR A LINEAR FORM OF LOGARITHMS OF ALGEBRAIC NUMBERS , 1968 .
[20] V. Sprindžuk. THE IRRATIONALITY OF THE VALUES OF CERTAIN TRANSCENDENTAL FUNCTIONS , 1968 .
[21] L. J. Mordell,et al. The diophantine equationz2=ax4+2bx2y2+cy4 , 1967 .
[22] William W. Adams,et al. Simultaneous asymptotic Diophantine approximations , 1967 .
[23] A. Brumer. On the units of algebraic number fields , 1967 .
[24] K. Mahler. Applications of some formulae by hermite to the approximation of exponentials and logarithms , 1967 .
[25] W. W. Adams. Asymptotic Diophantine Approximations and Hurwitz Numbers , 1967 .
[26] Albert Baker,et al. Linear forms in the logarithms of algebraic numbers I - IV Mathematika 13 , 1967 .
[27] W. Schmidt. Simultaneous Approximation to a Basis of a Real Numberfield , 1966 .
[28] W. W. Adams. TRANSCENDENTAL NUMBERS IN THE P-ADIC DOMAIN. , 1966 .
[29] A. Neron,et al. Quasi-fonctions et Hauteurs sur les Varietes Abeliennes , 1965 .
[30] K. Ramachandra. Some applications of Kronecker's limit formulas , 1964 .
[31] S. Lang. DIOPHANTINE APPROXIMATIONS ON TORUSES. , 1964 .
[32] L. Mordell. The Diophantine equationy2=ax3+bx2+cx+d , 1964 .
[33] C. Siegel. Bestimmung der elliptischen Modulfunktion durch eine Transformationsgleichung , 1964 .
[34] W. Schmidt. Metrical theorems on fractional parts of sequences , 1964 .
[35] D. Ridout. Rational approximations to algebraic numbers , 1957 .
[36] J. Cassels,et al. An Introduction to Diophantine Approximation , 1957 .
[37] K. F. Roth,et al. Rational approximations to algebraic numbers , 1955 .
[38] K. Mahler. On Compound Convex Bodies (II) , 1955 .
[39] K. Mahler,et al. On the approximation of logarithms of algebraic numbers , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[40] T. Schneider. Ein Satz über ganzwertige Funktionen als Prinzip für Transzendenzbeweise , 1949 .
[41] Paul Erdös,et al. On highly composite and similar numbers , 1944 .
[42] J. F. Koksma. Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen , 1939 .
[43] H. Behnke,et al. Zur theorie der diophantischen approximationen , 1924 .
[44] H. Behnke. Über die Verteilung von Irrationalitäten mod. 1 , 1922 .
[45] A. Ostrowski. Bemerkungen zur Theorie der Diophantischen Approximationen , 1922 .
[46] F. Lindemann. Ueber die Zahl π.*) , 1882 .
[47] H. Trotter,et al. Continued fractions for some algebraic numbers. , 1972 .
[48] S. Lang. Algebraic Number Theory , 1971 .
[49] M. Waldschmidt. Indépendance algébrique des valeurs de la fonction exponentielle , 1971 .
[50] J. Coates. An effective p-adic analogue of a theorem of Thue III. The diophantine equation $y^2 = x^2 + k$ , 1970 .
[51] R. M. Damerell. L-functions of elliptic curves with complex multiplication, II , 1970 .
[52] Wolfgang M. Schmidt,et al. Dirichlet's theorem on diophantine approximation. II , 1970 .
[53] J. Coates. An effective p-adic analogue of a theorem of Thue II. The greatest prime factor of a binary form , 1970 .
[54] J. Coates. An effective p-adic analogue of a theorem of Thue , 1969 .
[55] A. Baker. The Diophantine Equation y2 = ax3+bx2+cx+d , 1968 .
[56] S. Lang,et al. Introduction to Transcendental Numbers , 1967 .
[57] W. W. Adams,et al. Asymptotic diophantine approximations to e. , 1966, Proceedings of the National Academy of Sciences of the United States of America.
[58] S. Lang,et al. Some computations in diophantine approximations. , 1965 .
[59] S. Lang. Report on Diophantine approximations , 1965 .
[60] C. A. Rogers. LECTURES ON DIOPHANTINE APPROXIMATIONS , 1964 .
[61] E. Wirsing,et al. Approximation mit algebraischen Zahlen beschränkten Grades. , 1961 .
[62] A. O. Gelʹfond. Transcendental and Algebraic Numbers , 1960 .
[63] Wolfgang M. Schmidt,et al. A Metrical Theorem in Diophantine Approximation , 1960, Canadian Journal of Mathematics.
[64] P. Erdös. Some results on diophantine approximation , 1959 .
[65] W. Leveque,et al. On the frequency of small fractional parts in certain real sequences. III. , 1958 .
[66] Theodor Schneider,et al. Einführung in die transzendenten Zahlen , 1957 .
[67] K. Mahler. On the Approximation of π , 1953 .
[68] T. Schneider. Zur Theorie der Abelschen Funktionen und Integrale. , 1941 .
[69] K. Mahler,et al. Ein Übertragungsprinzip für konvexe Körper , 1939 .
[70] K. Mahler. Über transzendente $P$-adische Zahlen , 1935 .
[71] K. Mahler. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I. , 1932 .
[72] A. Gelfond. Sur les propriétés arithmétiques des fonctions entières , 1929 .
[73] J. Popken,et al. Zur Transzendenz vone , 1929 .
[74] C. Hermite. Œuvres de Charles Hermite: Sur la fonction exponentielle , 1874 .