Fractal and Chaotic Properties of Earthquakes

Fractal and chaotic properties of earthquake , Fractal and chaotic properties of earthquake , کتابخانه دیجیتال جندی شاپور اهواز

[1]  Anil K. Jain,et al.  An Intrinsic Dimensionality Estimator from Near-Neighbor Information , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[3]  T. Hirata Fractal dimension of fault systems in Japan: Fractal structure in rock fracture geometry at various scales , 1989 .

[4]  Stephen R. Brown,et al.  Broad bandwidth study of the topography of natural rock surfaces , 1985 .

[5]  C. Meneveau,et al.  The multifractal spectrum of the dissipation field in turbulent flows , 1987 .

[6]  H. Kanamori,et al.  A moment magnitude scale , 1979 .

[7]  D. L. Anderson,et al.  Theoretical Basis of Some Empirical Relations in Seismology by Hiroo Kanamori And , 1975 .

[8]  Max Wyss,et al.  Cannot Earthquakes Be Predicted , 1997 .

[9]  F. Busse An exploration of chaos: J. Argyris, G. Faust and M. Haase, Elsevier, Amsterdam, 1994, 722 pp., ISBN 0-444-82002-7 (hardbound), 0-444-82003-5 (paperback) , 1994 .

[10]  J. Havstad,et al.  Attractor dimension of nonstationary dynamical systems from small data sets. , 1989, Physical review. A, General physics.

[11]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[12]  Keisuke Ito,et al.  Multifractal analysis of earthquakes , 1992 .

[13]  Biman Das,et al.  Calculating the dimension of attractors from small data sets , 1986 .

[14]  Nakanishi,et al.  Cellular-automaton model of earthquakes with deterministic dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  SEISMICITY IN NORTH-EASTERN BRAZIL - FRACTAL CLUSTERING AND THE EVOLUTION OF THE B-VALUE , 1994 .

[16]  L. Liebovitch,et al.  A fast algorithm to determine fractal dimensions by box counting , 1989 .

[17]  Azeddine Beghdadi,et al.  ENTROPIC AND MULTIFRACTAL ANALYSIS OF DISORDERED MORPHOLOGIES , 1993 .

[18]  Jie Huang,et al.  Chaotic seismic faulting with a mass-spring model and velocity-weakening friction , 1992 .

[19]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[20]  David W. Simpson,et al.  Earthquake prediction : an international review , 1981 .

[21]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[22]  Newman,et al.  Chaos in reversed-field-pinch plasma simulation and experiment. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[24]  Toru Ouchi,et al.  Statistical analysis of the spatial distribution of earthquakes—variation of the spatial distribution of earthquakes before and after large earthquakes , 1986 .

[25]  C. D. Cutler,et al.  A REVIEW OF THE THEORY AND ESTIMATION OF FRACTAL DIMENSION , 1993 .

[26]  Kennel,et al.  Method to distinguish possible chaos from colored noise and to determine embedding parameters. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[27]  Donald L. Turcotte,et al.  Are earthquakes an example of deterministic chaos , 1990 .

[28]  Robert J. Geller,et al.  Earthquake prediction: a critical review , 1997 .

[29]  Christopher H. Scholz,et al.  Fractal analysis applied to characteristic segments of the San Andreas Fault , 1987 .

[30]  J. McCauley Chaos, dynamics, and fractals : an algorithmic approach to deterministic chaos , 1993 .

[31]  H. Schuster Deterministic chaos: An introduction , 1984 .

[32]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[33]  C. Scholz Microfractures, aftershocks, and seismicity , 1968 .

[34]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[35]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[36]  Ronald L. Biegel,et al.  Fractals, fault-gouge, and friction , 1989 .

[37]  Hiroo Kanamori,et al.  Quantification of Earthquakes , 1978, Nature.

[38]  P. Grassberger Finite sample corrections to entropy and dimension estimates , 1988 .

[39]  H. Takayasu,et al.  Fractal features of the earthquake phenomenon and a simple mechanical model , 1991 .

[40]  Yan Y. Kagan,et al.  Spatial distribution of earthquakes: the two-point correlation function , 1980 .

[41]  I. Sacks,et al.  On tidal triggering of earthquakes at Campi Flegrei, Italy , 1992 .

[42]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[43]  Takayuki Hirata,et al.  A correlation between the b value and the fractal dimension of earthquakes , 1989 .

[44]  J. Theiler,et al.  Don't bleach chaotic data. , 1993, Chaos.

[45]  R. Jensen,et al.  Direct determination of the f(α) singularity spectrum , 1989 .

[46]  A. Wolf,et al.  Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .

[47]  Cataldo Godano,et al.  Mdtifractal analysis of earthquake catalogues , 1995 .

[48]  F. Takens Detecting strange attractors in turbulence , 1981 .

[49]  I︠U︡riĭ Aleksandrovich Kravt︠s︡ov Limits of predictability , 1993 .

[50]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[51]  A. Crisanti,et al.  Strongly intermittent chaos and scaling in an earthquake model. , 1992, Physical Review A. Atomic, Molecular, and Optical Physics.

[52]  Cinna Lomnitz,et al.  Fundamentals of Earthquake Prediction , 1994 .

[53]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[54]  Keisuke Ito Towards a new view of earthquake phenomena , 1992 .

[55]  J. R. Wallis,et al.  Some long‐run properties of geophysical records , 1969 .

[56]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[57]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[58]  T. Blenkinsop Cataclasis and processes of particle size reduction , 1991 .

[59]  Schram,et al.  Generalized dimensions from near-neighbor information. , 1988, Physical review. A, General physics.

[60]  Celso Grebogi,et al.  Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems , 1989 .

[61]  K. Aki,et al.  Fractal geometry in the San Andreas Fault System , 1987 .

[62]  Jörn H. Kruhl,et al.  Fractals and dynamic systems in geoscience , 1994 .

[63]  Farrell,et al.  Comparing a nearest-neighbor estimator of local attractor dimensions for noisy data to the correlation dimension. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[64]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[65]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[66]  M. Crozier Landslides: Causes, Consequences and Environment , 1986 .

[67]  Sadaaki Miyamoto,et al.  Fuzzy Sets in Information Retrieval and Cluster Analysis , 1990, Theory and Decision Library.

[68]  H. Hurst METHODS OF USING LONG-TERM STORAGE IN RESERVOIRS. , 1956 .

[69]  Takayuki Hirata,et al.  Omori's Power Law aftershock sequences of microfracturing in rock fracture experiment , 1987 .

[70]  David Crossley,et al.  Fractal Velocity Models in Refraction Seismology , 1989 .

[71]  T. Jordan,et al.  Stochastic analysis of mantle convection experiments using two‐point correlation functions , 1994 .

[72]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[73]  B. Mandelbrot,et al.  On the secular pole motion and the Chandler wobble. , 1970 .

[74]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[75]  P. F. Meier,et al.  Evaluation of Lyapunov exponents and scaling functions from time series , 1988 .

[76]  Per Bak,et al.  The Devil's Staircase , 1986 .

[77]  Chiara Deangeli,et al.  Cellular automaton for realistic modelling of landslides , 1994, comp-gas/9407002.

[78]  Geoffrey C. P. King,et al.  The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-Value , 1983 .

[79]  L. Knopoff Earth tides as a triggering mechanism for earthquakes , 1964 .

[80]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[81]  H. Wakita,et al.  Groundwater radon anomalies associated with earthquakes , 1990 .

[82]  Hideki Takayasu,et al.  Fractals in the Physical Sciences , 1990 .

[83]  Christensen,et al.  Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. , 1992, Physical review letters.

[84]  Prediction of Time Series , 1993 .

[85]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[86]  Bruce E. Shaw,et al.  Patterns of seismic activity preceding large earthquakes , 1992 .

[87]  Shi-Zhong Hong,et al.  AN AMENDMENT TO THE FUNDAMENTAL LIMITS ON DIMENSION CALCULATIONS , 1994 .

[88]  Bruce E. Shaw,et al.  Dynamics of earthquake faults , 1993, adap-org/9307001.

[89]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[90]  Fractal Characterization of Intertropical Precipitations Variability and Anisotropy , 1991 .

[91]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[92]  Richard F. Voss,et al.  Fractals in nature: from characterization to simulation , 1988 .

[93]  Yan Y. Kagan,et al.  Statistics of characteristic earthquakes , 1993 .

[94]  Shaun Lovejoy,et al.  EGS Richardson AGU Chapman NVAG3 Conference: Nonlinear Variability in Geophysics: scaling and multifractal processes , 1994 .

[95]  J. Evernden,et al.  Study of regional seismicity and associated problems , 1970, Bulletin of the Seismological Society of America.

[96]  Borgani,et al.  Multifractal analysis of the galaxy distribution: Reliability of results from finite data sets. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[97]  Warner Marzocchi,et al.  Practical application of fractal analysis: problems and solutions , 1998 .

[98]  V. Pisarenko,et al.  Multifractal patterns of seismicity , 1990 .

[99]  Schuster,et al.  Generalized dimensions and entropies from a measured time series. , 1987, Physical review. A, General physics.

[100]  M. Imoto,et al.  Multifractal analysis of spatial distribution of microearthquakes in the Kanto region , 1991 .

[101]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[102]  Yan Y. Kagan,et al.  Statistical study of the occurrence of shallow earthquakes , 1978 .

[103]  P. Grassberger,et al.  Efficient large-scale simulations of a uniformly driven system. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[104]  Keisuke Ito,et al.  Fractal structure of spatial distribution of microfracturing in rock , 1987 .

[105]  H. Wakita,et al.  A method for continuous measurement of radon in groundwater for earthquake prediction , 1977 .

[106]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[107]  F. Schmitt,et al.  Mulifractal phase transitions: the origin of self-organized criticality in earthquakes , 1994 .

[108]  James B. Ramsey,et al.  The statistical properties of dimension calculations using small data sets , 1990 .

[109]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[110]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[111]  Shunji Ouchi,et al.  Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis , 1992 .

[112]  T. Vicsek Fractal Growth Phenomena , 1989 .

[113]  Klein,et al.  Dynamics of a traveling density wave model for earthquakes. , 1996, Physical review letters.

[114]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[115]  Y. Ogata,et al.  Some Statistical Features of the Long-Term Variation of the Global and Regional Seismic Activity , 1991 .

[116]  Theiler,et al.  Efficient algorithm for estimating the correlation dimension from a set of discrete points. , 1987, Physical review. A, General physics.

[117]  R. Meissner Non-Linear Processes in Earthquake Prediction Research, a Review , 1994 .

[118]  Uriel Frisch,et al.  A simple dynamical model of intermittent fully developed turbulence , 1978, Journal of Fluid Mechanics.

[119]  Gabor Korvin,et al.  Fractal models in the earth sciences , 1992 .

[120]  H. Schellnhuber,et al.  Efficient box-counting determination of generalized fractal dimensions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[121]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[122]  T. Hewett Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport , 1986 .

[123]  E. H. Lloyd,et al.  The expected value of the adjusted rescaled Hurst range of independent normal summands , 1976 .

[124]  L. Glass,et al.  Understanding Nonlinear Dynamics , 1995 .

[125]  Y. Kagan,et al.  Earthquakes Cannot Be Predicted , 1997, Science.

[126]  L. Brown,et al.  PION--PION SCATTERING, CURRENT ALGEBRA, UNITARITY, AND THE WIDTH OF THE RHO MESON. , 1968 .

[127]  Yosihiko Ogata,et al.  Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes , 1988 .

[128]  R. Fluegeman,et al.  Fractal analysis of long-range paleoclimatic data: Oxygen isotope record of pacific core V28-239 , 1989 .

[129]  H. Sato Fractal interpretation of the linear relation between logarithms of maximum amplitude and hypocentral distance , 1988 .

[130]  Konstantinos Papadopoulos,et al.  Reconstruction of low‐dimensional magnetospheric dynamics by singular spectrum analysis , 1993 .

[131]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[132]  Yuji Nakamura,et al.  Short-term and intermediate-term geochemical precursors , 1988 .

[133]  P. Grassberger,et al.  Dimensions and entropies of strange attractors from a fluctuating dynamics approach , 1984 .

[134]  D. Roberts,et al.  Is there a strange attractor in the magnetosphere , 1991 .

[135]  V. Klemeš The Hurst Phenomenon: A puzzle? , 1974 .

[136]  A. F. Pacheco,et al.  Probabilistic Approach to Time-Dependent Load-Transfer Models of Fracture , 1998 .

[137]  H. Wakita,et al.  An anomalous radon decrease in groundwater prior to an M6.0 earthquake: A possible precursor? , 1991 .

[138]  Francis C. Moon,et al.  Chaotic and fractal dynamics , 1992 .

[139]  C. Goltz,et al.  Multifractal and entropic properties of landslides in Japan , 1996 .

[140]  Shaun Lovejoy,et al.  Non-Linear Variability in Geophysics , 1991 .

[141]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[142]  Passamante,et al.  Recognizing determinism in a time series. , 1993, Physical review letters.

[143]  Ian G. Main,et al.  Statistical physics, seismogenesis, and seismic hazard , 1996 .

[144]  J. Theiler Some comments on the correlation dimension of $1/f^\alpha$ noise , 1993, comp-gas/9302001.