Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3H2 system under atmospheric pressure

Abstract A transport and epitaxy model to describe silicon epitaxial film growth in a SiHCl 3 H 2 system under atmospheric pressure is developed by numerical calculations and comparison with experiments. The rate of epitaxial growth is calculated by computing the transport of momentum, heat and chemical species in a reactor incorporating chemical reactions at a substrate surface described by the Eley-Rideal model. The reaction processes determining the growth rate consist of chemisorption of SiHCl 3 and decomposition by H 2 , rate constants of which are evaluated from the model and measured results. The state of the surface during the epitaxial growth is also discussed considering the intermediate species, elementary reactions and rate-limiting processes. The epitaxial growth rate is able to be predicted by the model in this study over wide growth conditions of the species concentrations and the temperatures.

[1]  T. Pakkanen,et al.  Theoretical studies on the growth mechanisms of silicon thin films by atomic layer epitaxy , 1989 .

[2]  Weinberg,et al.  Adsorption, abstraction, and pairing of atomic hydrogen on Si(100)-(2 x 1). , 1995, Physical review letters.

[3]  Bernard S. Meyerson,et al.  Silane pyrolysis rates for the modeling of chemical vapor deposition , 1987 .

[4]  Michael E. Coltrin,et al.  Theoretical study of the heats of formation of Si2Hn (n = 0-6) compounds and trisilane , 1986 .

[5]  M. Suemitsu,et al.  Surface Hydrogen Desorption as a Rate-Limiting Process in Silane Gas-Source Molecular Beam Epitaxy , 1990 .

[6]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[7]  J. Bloem,et al.  Surface morphology of HCl etched silicon wafers: I. Gas phase composition in the silicon HCl system and surface reactions during etching , 1977 .

[8]  Y. Ohshita,et al.  In-situ monitoring of surface reactions in Si vapor phase epitaxial growth by surface photo-absorption method , 1993 .

[9]  Y. Chabal,et al.  Surface infrared study of Si(100)-(2×1)H , 1984 .

[10]  T. Takada,et al.  Surface reaction mechanism of SiCl2 with carrier gas H2 in silicon vapor phase epitaxial growth , 1991 .

[11]  B. A. Joyce,et al.  Epitaxial Growth of Silicon by Hydrogen Reduction of SiHCl3 onto Silicon Substrates , 1962 .

[12]  W. H. Weinberg,et al.  Kinetics of coverage‐dependent adsorption , 1995 .

[13]  S. George,et al.  Modeling silicon epitaxial growth with SiH2Cl2 , 1993 .

[14]  J. Jasinski,et al.  Absolute rate constants for the reaction of SiH with hydrogen, deuterium and silane , 1989 .

[15]  J. Nishizawa,et al.  Mechanism of chemical vapor deposition of silicon , 1978 .

[16]  V. Strunin,et al.  Laser pyrolysis of trichlorosilene. Kinetics and mechanism , 1990 .

[17]  Hitoshi Habuka,et al.  Gas flow and heat transfer in a pancake chemical vapor deposition reactor , 1995 .

[18]  Tung-Sheng Kuan,et al.  Growth of Facet‐Free Selective Silicon Epitaxy at Low Temperature and Atmospheric Pressure , 1991 .

[19]  Robert J. Kee,et al.  A Mathematical Model of the Fluid Mechanics and Gas‐Phase Chemistry in a Rotating Disk Chemical Vapor Deposition Reactor , 1989 .

[20]  W. Holstein Thermal Diffusion in Metal‐Organic Chemical Vapor Deposition , 1988 .

[21]  F. Shimura Semiconductor Silicon Crystal Technology , 1989 .

[22]  Robert J. Kee,et al.  A Mathematical Model of Silicon Chemical Vapor Deposition Further Refinements and the Effects of Thermal Diffusion , 1986 .

[23]  S. E. Bradshaw The Kinetics of Epitaxial Silicon Deposition by the Hydrogen Reduction of Chlorosilanes , 1966 .

[24]  R. Pollard,et al.  An approach for modeling surface reaction kinetics in chemical vapor deposition processes , 1995 .

[25]  Hitoshi Habuka,et al.  Effect of Transport Phenomena on Boron Concentration Profiles in Silicon Epitaxial Wafers , 1996 .

[26]  W. H. Weinberg,et al.  Monte Carlo simulations of temperature programmed desorption spectra , 1994 .

[27]  U. Narusawa Si Deposition from Chlorosilanes I . Deposition Modeling , 1994 .

[28]  A. Kersch,et al.  A Gas‐Phase and Surface Kinetics Model for Silicon Epitaxial Growth with SiH2Cl2 in an RTCVD Reactor , 1995 .

[29]  T. Urisu,et al.  Self-Limiting Adsorption of SiCl 2 H 2 and Its Application to the Layer-by-Layer Photochemical Process , 1991 .

[30]  F. Mcfeely,et al.  The chemisorption of chlorosilanes and chlorine on Si(111)7 × 7 , 1990 .

[31]  L. P. Hunt,et al.  High Temperature Reactions in the Silicon‐Hydrogen‐Chlorine System , 1974 .

[32]  J. Jasinski,et al.  Absolute rate constants for the reaction of silylene with hydrogen, silane, and disilane , 1988 .

[33]  K. Taniguchi,et al.  Time-dependent-dielectric breakdown of thin thermally grown SiO2films , 1985, IEEE Transactions on Electron Devices.

[34]  M. B. Robinson,et al.  Adsorption and decomposition of trichlorosilane and trichlorogermane on porous silicon and Si(100)2×1 surfaces , 1995 .

[35]  Robert J. Kee,et al.  A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor , 1984 .

[36]  Scott,et al.  Interaction of Si2H6 with a Si(111)-77 surface. , 1989, Physical review. B, Condensed matter.

[37]  Michael E. Coltrin,et al.  A theoretical study of the heats of formation of silicon hydride (SiHn), silicon chloride (SiCln), and silicon hydride chloride (SiHnClm) compounds , 1985 .

[38]  J. Korec Modeling of chemical vapor deposition: III. Silicon epitaxy from chlorosilanes , 1983 .

[39]  Robert J. Kee,et al.  SURFACE CHEMKIN-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface - gas-phase interface , 1996 .

[40]  Reginald F. Lever,et al.  The Equilibrium Behavior of the Silicon-Hydrogen-Chlorine System , 1964, IBM J. Res. Dev..

[41]  B. A. Scott,et al.  Summary Abstract: Chemisorption of silanes on the Si(111)‐(7×7) surface , 1987 .

[42]  J. Newman,et al.  Silicon Deposition on a Rotating Disk , 1980 .

[43]  B. A. Scott,et al.  The role of surface reactions in monosilane pyrolysis , 1988 .

[44]  Irving Langmuir,et al.  The mechanism of the catalytic action of platinum in the reactions 2Co + O2= 2Co2 and 2H2+ O2= 2H2O , 1922 .

[45]  H. Bernhard Schlegel,et al.  An ab initio MO study of the thermal decomposition of chlorinated monosilanes, SiH4-nCln (n = 0-4) , 1993 .

[46]  S. Gates,et al.  Growth of Si on Si(100) via H/Cl exchange and the effect of interfacial boron , 1992 .

[47]  W. H. Weinberg,et al.  Theoretical and simulation studies of recombinative temperature programmed desorption , 1995 .

[48]  V. S. Ban,et al.  Chemical processes in vapor deposition of silicon. I. Deposition from dichlorosilane and etching by hydrochloric acid , 1975 .

[49]  T. Engel,et al.  Kinetics of the adsorption of O2 and of the desorption of SiO on Si(100): A molecular beam, XPS, and ISS study , 1987 .

[50]  V. Ban Chemical Processes in Vapor Deposition of Silicon II . Deposition from and , 1975 .

[51]  W. J. Choyke,et al.  The adsorption and surface reaction of SiCl4 on Si(100)-(2 × 1) , 1994 .

[52]  A. Chernov,et al.  Theoretical analysis of equilibrium adsorption layers in CVD systems (Si-H-Cl, Ga-As-H-Cl) , 1978 .

[53]  Rate constants for silylene reactions , 1990 .

[54]  Tung-Sheng Kuan,et al.  Low‐temperature selective epitaxial growth of silicon at atmospheric pressure , 1989 .

[55]  J. Korec,et al.  Modeling of chemical vapor deposition: I. General considerations , 1982 .

[56]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[57]  K. Okuyama,et al.  Numerical Evaluation of Silicon-Thin Film Growth from SiHCl3-H2 Gas Mixture in a Horizontal Chemical Vapor Deposition Reactor. , 1994 .

[58]  Tromp,et al.  H coverage dependence of Si(001) homoepitaxy. , 1994, Physical review letters.

[59]  Norbert Adolph Lange,et al.  Handbook of chemistry , 1944 .