Quantum Higher Order Singular Value Decomposition

Higher order singular value decomposition (HOSVD) is an important tool for analyzing big data in multilinear algebra and machine learning. In this paper, we present a quantum algorithm for higher order singular value decomposition. Our method allows one to decompose a tensor into a core tensor containing tensor singular values and some unitary matrices by quantum computers. Compared to the classical HOSVD algorithm, our quantum algorithm provides an exponential speedup.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  Quantum Matrix Multiplication , 2018 .

[3]  Guofeng Zhang,et al.  Quantum tensor singular value decomposition with applications to recommendation systems , 2019, ArXiv.

[4]  Anupam Prakash,et al.  Quantum algorithms for linear algebra and machine learning , 2014 .

[5]  L. Qi,et al.  Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors , 2016 .

[6]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[7]  Panagiotis Symeonidis,et al.  Tag recommendations based on tensor dimensionality reduction , 2008, RecSys '08.

[8]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[9]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[10]  Changpeng Shao,et al.  Quantum Algorithms to Matrix Multiplication , 2018, 1803.01601.

[11]  James Caverlee,et al.  Tensor Completion Algorithms in Big Data Analytics , 2017, ACM Trans. Knowl. Discov. Data.

[12]  Mengshi Zhang,et al.  Iterative methods for computing U-eigenvalues of non-symmetric complex tensors with application in quantum entanglement , 2019, Comput. Optim. Appl..

[13]  John von Neumann,et al.  On Tensor-Product Model Based Representation of Neural Networks , 2011 .

[14]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[15]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[16]  G. Golub,et al.  A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.

[17]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[18]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[19]  Liqun Qi,et al.  How entangled can a multi-party system possibly be? , 2017, Physics Letters A.

[20]  Martin Head-Gordon,et al.  Higher order singular value decomposition in quantum chemistry , 2010 .

[21]  L. Qi,et al.  Tensor Analysis: Spectral Theory and Special Tensors , 2017 .

[22]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[23]  Peter Wittek,et al.  Bayesian deep learning on a quantum computer , 2018, Quantum Machine Intelligence.

[24]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[25]  Mile Gu,et al.  Experimental quantum computing to solve systems of linear equations. , 2013, Physical review letters.

[26]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[27]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[28]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[29]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[30]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[31]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[32]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Nuria Oliver,et al.  Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering , 2010, RecSys '10.

[35]  L. Qi,et al.  Regularly Decomposable Tensors and Classical Spin States , 2016, 1612.02638.

[36]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[37]  Jian-Wei Pan,et al.  Experimental realization of quantum algorithm for solving linear systems of equations , 2013, 1302.1946.

[38]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[39]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[40]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[41]  James Bennett,et al.  The Netflix Prize , 2007 .

[42]  Maksym Kholiavchenko,et al.  Iterative Low-Rank Approximation for CNN Compression , 2018, ArXiv.

[43]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[44]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[45]  Seth Lloyd,et al.  Quantum singular-value decomposition of nonsparse low-rank matrices , 2016, 1607.05404.

[46]  Guofeng Zhang,et al.  Dynamical analysis of quantum linear systems driven by multi-channel multi-photon states , 2016, Autom..