Predicting microRNA targeting efficacy in Drosophila

BackgroundMicroRNAs (miRNAs) are short regulatory RNAs that derive from hairpin precursors. Important for understanding the functional roles of miRNAs is the ability to predict the messenger RNA (mRNA) targets most responsive to each miRNA. Progress towards developing quantitative models of miRNA targeting in Drosophila and other invertebrate species has lagged behind that of mammals due to the paucity of datasets measuring the effects of miRNAs on mRNA levels.ResultsWe acquired datasets suitable for the quantitative study of miRNA targeting in Drosophila. Analyses of these data expanded the types of regulatory sites known to be effective in flies, expanded the mRNA regions with detectable targeting to include 5′ untranslated regions, and identified features of site context that correlate with targeting efficacy in fly cells. Updated evolutionary analyses evaluated the probability of conserved targeting for each predicted site and indicated that more than a third of the Drosophila genes are preferentially conserved targets of miRNAs. Based on these results, a quantitative model was developed to predict targeting efficacy in insects. This model performed better than existing models, and it drives the most recent version, v7, of TargetScanFly.ConclusionsOur evolutionary and functional analyses expand the known scope of miRNA targeting in flies and other insects. The existence of a quantitative model that has been developed and trained using Drosophila data will provide a valuable resource for placing miRNAs into gene regulatory networks of this important experimental organism.

[1]  Eugene Berezikov,et al.  Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. , 2008, Genes & development.

[2]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[3]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[4]  V. Ambros,et al.  Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets , 2009, Proceedings of the National Academy of Sciences.

[5]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[6]  Manolis Kellis,et al.  A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. , 2008, Genes & development.

[7]  Leonard D. Goldstein,et al.  The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans , 2010, Nucleic acids research.

[8]  S. Cohen,et al.  Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster , 2006, Molecular and Cellular Biology.

[9]  Martin L. Miller,et al.  Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs , 2009, Nature Biotechnology.

[10]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[11]  A. Siepel,et al.  The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution , 2013, RNA.

[12]  Phillip D. Zamore,et al.  Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1 , 2007, Cell.

[13]  Ivo Grosse,et al.  Functional microRNA targets in protein coding sequences , 2012, Bioinform..

[14]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[15]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[16]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[17]  Daehyun Baek,et al.  mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. , 2014, Molecular cell.

[18]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[19]  M. Levine,et al.  Neural-specific elongation of 3′ UTRs during Drosophila development , 2011, Proceedings of the National Academy of Sciences.

[20]  E. Lai,et al.  A view from Drosophila: multiple biological functions for individual microRNAs. , 2010, Seminars in cell & developmental biology.

[21]  Christoph Dieterich,et al.  doRiNA: a database of RNA interactions in post-transcriptional regulation , 2011, Nucleic Acids Res..

[22]  E. Hovig,et al.  A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. , 2015, Annual review of genetics.

[23]  E. Izaurralde,et al.  Towards a molecular understanding of microRNA-mediated gene silencing , 2015, Nature Reviews Genetics.

[24]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[25]  G. Rubin,et al.  Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..

[27]  B. Berger,et al.  Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. , 2011, Genome research.

[28]  Manolis Kellis,et al.  Reliable prediction of regulator targets using 12 Drosophila genomes. , 2007, Genome research.

[29]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[30]  S. Cohen,et al.  Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations. , 2014, Developmental cell.

[31]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[32]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[33]  M. Landgraf,et al.  MicroRNA-encoded behavior in Drosophila , 2015, Science.

[34]  Jim Thurmond,et al.  FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations , 2014, Nucleic Acids Res..

[35]  Li-San Wang,et al.  The microRNA miR-34 modulates aging and neurodegeneration in Drosophila , 2012, Nature.

[36]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[37]  D. Bartel,et al.  Poly(A)-tail profiling reveals an embryonic switch in translational control , 2014, Nature.

[38]  B. Berger,et al.  Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs , 2010, Proceedings of the National Academy of Sciences.

[39]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[40]  D. Bartel,et al.  Global analyses of the effect of different cellular contexts on microRNA targeting. , 2014, Molecular cell.

[41]  V. Ambros,et al.  Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. , 2003, Developmental biology.

[42]  I. MacRae,et al.  Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets , 2015, eLife.

[43]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[44]  Mihaela Zavolan,et al.  Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. , 2009, Genome research.

[45]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[46]  M. Zavolan,et al.  A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets , 2013, Nature Methods.

[47]  D. Bartel,et al.  Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs , 2015, Proceedings of the National Academy of Sciences.

[48]  W. Bender,et al.  MicroRNAs in the Drosophila bithorax complex. , 2008, Genes & development.

[49]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[50]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[51]  Bryan R. Cullen,et al.  MicroRNA Target Site Identification by Integrating Sequence and Binding Information , 2013, Nature Methods.

[52]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[53]  James B. Brown,et al.  Global patterns of tissue-specific alternative polyadenylation in Drosophila. , 2012, Cell reports.

[54]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[55]  Li Yang,et al.  The transcriptional diversity of 25 Drosophila cell lines. , 2011, Genome research.

[56]  D. Bartel,et al.  Formation, Regulation and Evolution of Caenorhabditis elegans 3′UTRs , 2010, Nature.

[57]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[58]  Mihaela Zavolan,et al.  Reproductive toxicology. Trichloroethylene. , 1997, BMC Bioinformatics.

[59]  Stefan L Ameres,et al.  The impact of target site accessibility on the design of effective siRNAs , 2008, Nature Biotechnology.

[60]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Xiaohui Xie,et al.  MotifMap: integrative genome-wide maps of regulatory motif sites for model species , 2011, BMC Bioinformatics.

[62]  N. Perrimon,et al.  An endogenous small interfering RNA pathway in Drosophila , 2008, Nature.

[63]  Panayiotis V. Benos,et al.  ComiR: combinatorial microRNA target prediction tool , 2013, Nucleic Acids Res..

[64]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[65]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[66]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[67]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[68]  G. Azzam,et al.  Developmental RNA processing of 3′UTRs in Hox mRNAs as a context-dependent mechanism modulating visibility to microRNAs , 2010, Development.

[69]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[70]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[71]  Jian Lu,et al.  The birth and death of microRNA genes in Drosophila , 2008, Nature Genetics.

[72]  E. Lai,et al.  Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species , 2017, Genome Biology.

[73]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[74]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[75]  P. Cramer,et al.  Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan , 2013, RNA biology.

[76]  N. Sokol,et al.  Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. , 2012, Developmental cell.

[77]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[78]  Ammar S Naqvi,et al.  Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. , 2011, Genome research.

[79]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[80]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[81]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[82]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[83]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[84]  D. Bartel,et al.  Extensive alternative polyadenylation during zebrafish development , 2012, Genome research.

[85]  Phillip D. Zamore,et al.  Sorting of Drosophila Small Silencing RNAs , 2007, Cell.

[86]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[87]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[88]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[89]  S. Cohen,et al.  Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. , 2010, Genes & development.

[90]  Dmitrij Frishman,et al.  TargetSpy: a supervised machine learning approach for microRNA target prediction , 2010, BMC Bioinformatics.

[91]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.