Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

[1]  A. Szkudlarek,et al.  The nanoscale implications of a molecular gas beam during electron beam induced deposition. , 2014, ACS applied materials & interfaces.

[2]  Libao An,et al.  On Contact Resistance of Carbon Nanotubes , 2013 .

[3]  A. Ferrari,et al.  Electron-beam-induced direct etching of graphene , 2013 .

[4]  C. Dimitrakopoulos,et al.  Reducing contact resistance in graphene devices through contact area patterning. , 2013, ACS nano.

[5]  G. A. Magel,et al.  Enhanced material purity and resolution via synchronized laser assisted electron beam induced deposition of platinum. , 2013, Nanoscale.

[6]  A. G. Fedorov,et al.  Fabrication of an UltraLow-Resistance Ohmic Contact to MWCNT–Metal Interconnect Using Graphitic Carbon by Electron Beam-Induced Deposition (EBID) , 2012, IEEE Transactions on Nanotechnology.

[7]  J. Yates,et al.  Methyl Radical Reactivity on the Basal Plane of Graphite , 2012 .

[8]  B. Cho,et al.  Determination of work function of graphene under a metal electrode and its role in contact resistance. , 2012, Nano letters.

[9]  A. Fedorov,et al.  Light‐Induced Plasmon‐Assisted Phase Transformation of Carbon on Metal Nanoparticles , 2012 .

[10]  A. Fedorov,et al.  Inert gas jets for growth control in electron beam induced deposition , 2011 .

[11]  W. Haensch,et al.  Effects of Nanoscale Contacts to Graphene , 2011, IEEE Electron Device Letters.

[12]  J. Coleman,et al.  Nitrogen assisted etching of graphene layers in a scanning electron microscope , 2011 .

[13]  A. Fedorov,et al.  Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon. , 2011, Nano letters.

[14]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[15]  A. Fedorov,et al.  Thermally induced transformations of amorphous carbon nanostructures fabricated by electron beam induced deposition. , 2011, ACS applied materials & interfaces.

[16]  A. Fedorov,et al.  Directed 2D‐to‐3D Pattern Transfer Method for Controlled Fabrication of Topologically Complex 3D Features in Silicon , 2011, Advanced materials.

[17]  Y. Bando,et al.  Superstrong Low‐Resistant Carbon Nanotube–Carbide–Metal Nanocontacts , 2010, Advanced materials.

[18]  Zhihong Chen,et al.  Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.

[19]  William A. Goddard,et al.  Contact Resistance for “End-Contacted” Metal−Graphene and Metal−Nanotube Interfaces from Quantum Mechanics , 2010 .

[20]  A. Fedorov,et al.  Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon. , 2010, ACS applied materials & interfaces.

[21]  Konrad Rykaczewski,et al.  The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface , 2010, Nanotechnology.

[22]  In-Seok Yeo,et al.  Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability , 2009 .

[23]  A. Fedorov,et al.  Electron beam induced deposition of residual hydrocarbons in the presence of a multiwall carbon nanotube , 2009 .

[24]  J. Appenzeller,et al.  Screening and interlayer coupling in multilayer graphene field-effect transistors. , 2009, Nano letters.

[25]  Patrik Hoffmann,et al.  Gas-assisted focused electron beam and ion beam processing and fabrication , 2008 .

[26]  A. Fedorov,et al.  Dynamic growth of carbon nanopillars and microrings in electron beam induced dissociation of residual hydrocarbons. , 2008, Ultramicroscopy.

[27]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[28]  C. W. Hagen,et al.  Growth behavior near the ultimate resolution of nanometer-scale focused electron beam-induced deposition , 2008, Nanotechnology.

[29]  Michael F. Crommie,et al.  Hydrocarbon lithography on graphene membranes , 2008 .

[30]  W. Goddard,et al.  Contact Resistance Properties between Nanotubes and Various Metals from Quantum Mechanics , 2007 .

[31]  A. Fedorov,et al.  Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy , 2007 .

[32]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[33]  P. Rack,et al.  Focused, Nanoscale Electron-Beam-Induced Deposition and Etching , 2006 .

[34]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[35]  L. Peng,et al.  In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties. , 2006, The journal of physical chemistry. B.

[36]  C. W. Hagen,et al.  Spatial resolution limits in electron-beam-induced deposition , 2005 .

[37]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[38]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) , 2005, IEEE Electron Device Letters.

[39]  W. Hoenlein,et al.  Sub-20 nm short channel carbon nanotube transistors. , 2004, Nano letters.

[40]  A. Krasheninnikov,et al.  Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies , 2004 .

[41]  E. Louis,et al.  First-principles phase-coherent transport in metallic nanotubes with realistic contacts. , 2002, Physical review letters.

[42]  Saroj K. Nayak,et al.  Effect of H2O adsorption on electron transport in a carbon nanotube , 2002 .

[43]  W. Steinhögl,et al.  Size-dependent resistivity of metallic wires in the mesoscopic range , 2002 .

[44]  M. Shiraishi,et al.  Work function of carbon nanotubes , 2001 .

[45]  Kim Y. Lee,et al.  Multiple electron-beam lithography , 2001 .

[46]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[47]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[48]  N. Lustig,et al.  Thermal stability and electrical properties of hydrogenated amorphous carbon film , 1994 .

[49]  Hong-Yu Chen,et al.  Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer , 2012, IEEE Transactions on Electron Devices.

[50]  V. Perebeinos,et al.  Double Contacts for Improved Performance of Graphene Transistors , 2012, IEEE Electron Device Letters.

[51]  A. Fedorov,et al.  Directed 2D-to-3D pattern transfer method for controlled fabrication of topologically complex three- dimensional nanostructures in silicon , 2011 .

[52]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[53]  M. Nath,et al.  Nanotubes. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[54]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .