Fatigue evaluation of long cortical bone using ultrasonic guided waves.

Bone fatigue fracture is a progressive disease due to stress concentration. This study aims to evaluate the long bone fatigue damage using the ultrasonic guided waves. Two-dimensional finite-difference time-domain method was employed to simulate the ultrasonic guided wave propagation in the long bone under different elastic modulus. The experiment was conducted on a 3.8 mm-thick bovine bone plate. The phase velocities of two fundamental guided modes, A1 and S1, were measured by using the axial transmission technique. Simulation shows that the phase velocities of guided modes A1 and S1 decrease with the increasing of the fatigue damage. After 20,000 cycles of fatigue loading on the bone plate, the average phase velocities of A1 and S1 modes were 6.6% and 5.3% respectively, lower than those of the intact bone. The study suggests that ultrasonic guided waves can be potentially used to evaluate the fatigue damage in long bones.

[1]  P. Cawley,et al.  A two-dimensional Fourier transform method for the measurement of propagating multimode signals , 1991 .

[2]  Alexander Sutin,et al.  Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. , 2005, The Journal of the Acoustical Society of America.

[3]  P. Bélanger,et al.  Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method. , 2017, The Journal of the Acoustical Society of America.

[4]  Peter Zioupos,et al.  Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples. , 2005, Journal of biomechanical engineering.

[5]  Maryline Talmant,et al.  Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments. , 2007, The Journal of the Acoustical Society of America.

[6]  Françoise Peyrin,et al.  Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. , 2005, Ultrasound in medicine & biology.

[7]  D.I. Fotiadis,et al.  Ultrasonic monitoring of bone fracture healing , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  Lawrence H Le,et al.  Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue. , 2013, Ultrasound in medicine & biology.

[9]  D R Carter,et al.  Bone creep-fatigue damage accumulation. , 1989, Journal of biomechanics.

[10]  D. Carter,et al.  Cyclic mechanical property degradation during fatigue loading of cortical bone. , 1996, Journal of biomechanics.

[11]  Pascal Laugier,et al.  Bone quantitative ultrasound , 2011 .

[12]  S. Yoon,et al.  Correlations between ultrasonic guided wave velocities and bone properties in bovine tibia in vitro. , 2012, The Journal of the Acoustical Society of America.

[13]  Jussi Timonen,et al.  Thickness sensitivity of ultrasound velocity in long bone phantoms. , 2004, Ultrasound in medicine & biology.

[14]  A. Sarvazyan,et al.  Multi-frequency axial transmission bone ultrasonometer. , 2014, Ultrasonics.

[15]  Dimitrios I Fotiadis,et al.  Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones. , 2007, The Journal of the Acoustical Society of America.

[16]  F. Berger,et al.  Stress fractures in the lower extremity. The importance of increasing awareness amongst radiologists. , 2007, European Journal of Radiology.

[17]  Katsunori Mizuno,et al.  The relationship between ultrasonic backscatter and trabecular anisotropic microstructure in cancellous bone , 2014 .

[18]  F. Frassica,et al.  The effect of pulsed ultrasound in the treatment of tibial stress fractures. , 2004, Orthopedics.

[19]  Jean-Gabriel Minonzio,et al.  Predicting bone strength with ultrasonic guided waves , 2017, Scientific Reports.

[20]  Experimental observation of cumulative second-harmonic generation of lamb waves propagating in long bones. , 2014, Ultrasound in medicine & biology.

[21]  Y. Pao,et al.  On the determination of phase and group velocities of dispersive waves in solids , 1978 .

[22]  D. Ta,et al.  Multichannel wideband mode-selective excitation of ultrasonic guided waves in long cortical bone , 2016, 2016 IEEE International Ultrasonics Symposium (IUS).

[23]  Christ Glorieux,et al.  Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate , 2003 .

[24]  Mauricio D. Sacchi,et al.  Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method , 2017, Comput. Biol. Medicine.

[25]  Harry K. Genant,et al.  Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status , 1999 .

[26]  Lawrence H Le,et al.  Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies. , 2014, Ultrasonics.

[27]  R. Pidaparti,et al.  Experimental investigation of Poisson's ratio as a damage parameter for bone fatigue. , 2002, Journal of biomedical materials research.

[28]  Yu Jeffrey Gu,et al.  Probing long bones with ultrasonic body waves , 2010 .

[29]  M. Deng Second-harmonic generation of ultrasonic guided wave propagation in an anisotropic solid plate , 2008 .

[30]  T. Keaveny,et al.  Sensitivity of multiple damage parameters to compressive overload in cortical bone. , 2005, Journal of biomechanical engineering.

[31]  Maryline Talmant,et al.  Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. , 2004, The Journal of the Acoustical Society of America.

[32]  E. Bossy,et al.  Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. , 2002, The Journal of the Acoustical Society of America.

[33]  S. Dodd,et al.  Numerical and experimental simulation of the effect of long bone fracture healing stages on ultrasound transmission across an idealized fracture. , 2009, The Journal of the Acoustical Society of America.

[34]  Sabina Gheduzzi,et al.  Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study. , 2008, Ultrasound in medicine & biology.

[35]  Matthew J. Silva,et al.  Development of an in vivo bone fatigue damage model using axial compression of the rabbit forelimb. , 2016, Journal of biomechanics.

[36]  Maryline Talmant,et al.  Comparison of three ultrasonic axial transmission methods for bone assessment. , 2005, Ultrasound in medicine & biology.

[37]  Joshua A. Gargac,et al.  Detection of fatigue microdamage in whole rat femora using contrast-enhanced micro-computed tomography. , 2011, Journal of biomechanics.

[38]  G. Renaud,et al.  Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  Dean Ta,et al.  Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  J. Timonen,et al.  Measuring guided waves in long bones: modeling and experiments in free and immersed plates. , 2006, Ultrasound in medicine & biology.

[41]  M. Deng,et al.  Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach , 2007 .

[42]  Tommi Kärkkäinen,et al.  Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. , 2002, Physiological measurement.

[43]  P. Moilanen,et al.  Ultrasonic guided waves in bone , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Maryline Talmant,et al.  Computational evaluation of the compositional factors in fracture healing affecting ultrasound axial transmission measurements. , 2010, Ultrasound in medicine & biology.

[45]  Pascal Laugier,et al.  Ultrasound to Assess Bone Quality , 2014, Current Osteoporosis Reports.

[46]  J. Rose Ultrasonic Waves in Solid Media , 1999 .

[47]  Weiqi Wang,et al.  Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[48]  P Zioupos,et al.  The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. , 1996, Clinical biomechanics.

[49]  Vu-Hieu Nguyen,et al.  Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study , 2018, Biomechanics and Modeling in Mechanobiology.

[50]  D T Davy,et al.  A damage model for nonlinear tensile behavior of cortical bone. , 1999, Journal of biomechanical engineering.

[51]  Erkki Heikkola,et al.  Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer. , 2013, Ultrasound in medicine & biology.

[52]  E. V. Tkachenko,et al.  The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. , 2014, Journal of biomechanics.

[53]  E. Radin,et al.  Mechanical and morphological effects of strain rate on fatigue of compact bone. , 1989, Bone.

[54]  Suk Wang Yoon,et al.  Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia. , 2004, The Journal of the Acoustical Society of America.

[55]  Jean-Gabriel Minonzio,et al.  Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[56]  Maryline Talmant,et al.  Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments. , 2007, The Journal of the Acoustical Society of America.

[57]  Jean-Gabriel Minonzio,et al.  A free plate model can predict guided modes propagating in tubular bone-mimicking phantoms. , 2015, The Journal of the Acoustical Society of America.

[59]  Yuanyuan Wang,et al.  Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. , 2009, Ultrasound in medicine & biology.

[60]  R. J. Gray,et al.  Compressive fatique behaviour of bovine compact bone. , 1974, Journal of biomechanics.

[61]  David Taylor,et al.  Fatigue of bone and bones: An analysis based on stressed volume , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[62]  Armen Sarvazyan,et al.  Use of multiple acoustic wave modes for assessment of long bones: model study. , 2005, Ultrasonics.

[63]  Kailiang Xu,et al.  Wideband dispersion reversal of lamb waves , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[64]  Françoise Peyrin,et al.  An In Vitro Study of the Ultrasonic Axial Transmission Technique at the Radius: 1‐MHz Velocity Measurements Are Sensitive to Both Mineralization and Intracortical Porosity , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[65]  B Bianco,et al.  Computational methods for ultrasonic bone assessment. , 1999, Ultrasound in medicine & biology.

[66]  D T Davy,et al.  Comparison of damage accumulation measures in human cortical bone. , 1997, Journal of biomechanics.

[67]  David Mitton,et al.  Nonlinear ultrasound can detect accumulated damage in human bone. , 2008, Journal of biomechanics.

[68]  V. Frankel,et al.  Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. , 1981, Acta orthopaedica Scandinavica.

[69]  L. Le,et al.  The analysis and compensation of cortical thickness effect on ultrasonic backscatter signals in cancellous bone , 2014 .

[70]  P. Campistron,et al.  Development of a new ultrasonic technique for bone and biomaterials in vitro characterization. , 2002, Journal of Biomedical Materials Research.