Cutoff criteria for fit indexes in covariance structure analysis : Conventional criteria versus new alternatives

This article examines the adequacy of the “rules of thumb” conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practice. Using a 2‐index presentation strategy, which includes using the maximum likelihood (ML)‐based standardized root mean squared residual (SRMR) and supplementing it with either Tucker‐Lewis Index (TLI), Bollen's (1989) Fit Index (BL89), Relative Noncentrality Index (RNI), Comparative Fit Index (CFI), Gamma Hat, McDonald's Centrality Index (Mc), or root mean squared error of approximation (RMSEA), various combinations of cutoff values from selected ranges of cutoff criteria for the ML‐based SRMR and a given supplemental fit index were used to calculate rejection rates for various types of true‐population and misspecified models; that is, models with misspecified factor covariance(s) and models with misspecified factor loading(s). The results suggest that, for the ML method, a cutoff value close to .95 for TLI, BL89, CFI, RNI, and G...

[1]  K. Jöreskog A general approach to confirmatory maximum likelihood factor analysis , 1969 .

[2]  M. Browne Generalized Least Squares Estimators in the Analysis of Covariance Structures. , 1973 .

[3]  L. Tucker,et al.  A reliability coefficient for maximum likelihood factor analysis , 1973 .

[4]  P. Bentler,et al.  Significance Tests and Goodness of Fit in the Analysis of Covariance Structures , 1980 .

[5]  J. H. Steiger Statistically based tests for the number of common factors , 1980 .

[6]  C. Schriesheim Causal Analysis: Assumptions, Models, and Data , 1982 .

[7]  M. Browne,et al.  Cross-Validation Of Covariance Structures. , 1983, Multivariate behavioral research.

[8]  P. Bentler Some contributions to efficient statistics in structural models: Specification and estimation of moment structures , 1983 .

[9]  J. Hoelter The Analysis of Covariance Structures , 1983 .

[10]  J. S. Tanaka,et al.  A fit index for covariance structure models under arbitrary GLS estimation , 1985 .

[11]  George W. Bohrnstedt,et al.  Use of Null Models in Evaluating the Fit of Covariance Structure Models , 1985 .

[12]  A. Satorra,et al.  Power of the likelihood ratio test in covariance structure analysis , 1985 .

[13]  K. Bollen Sample size and bentler and Bonett's nonnormed fit index , 1986 .

[14]  J. S. Tanaka "How Big Is Big Enough?": Sample Size and Goodness of Fit in Structural Equation Models with Latent Variables. , 1987 .

[15]  H. Akaike Factor analysis and AIC , 1987 .

[16]  M. Browne Robustness of statistical inference in factor analysis and related models , 1987 .

[17]  T. W. Anderson,et al.  The asymptotic normal distribution of estimators in factor analysis under general conditions , 1988 .

[18]  R. P. McDonald,et al.  Goodness-of-fit indexes in confirmatory factor analysis : The effect of sample size , 1988 .

[19]  A. Shapiro,et al.  Robustness of normal theory methods in the analysis of linear latent variate models. , 1988 .

[20]  M. Browne,et al.  Single Sample Cross-Validation Indices for Covariance Structures. , 1989, Multivariate behavioral research.

[21]  Peter M. Bentler,et al.  EQS : structural equations program manual , 1989 .

[22]  R. P. McDonald,et al.  An index of goodness-of-fit based on noncentrality , 1989 .

[23]  K. Bollen A New Incremental Fit Index for General Structural Equation Models , 1989 .

[24]  Jeffrey S. Tanaka,et al.  Influence of sample size, estimation method, and model specification on goodness-of-fit assessments in structural equation models. , 1989 .

[25]  S. Mulaik,et al.  EVALUATION OF GOODNESS-OF-FIT INDICES FOR STRUCTURAL EQUATION MODELS , 1989 .

[26]  J. S. Tanaka,et al.  A general coefficient of determination for covariance structure models under arbitrary GLS estimation , 1989 .

[27]  T. W. Anderson,et al.  Asymptotic Chi-Square Tests for a Large Class of Factor Analysis Models , 1990 .

[28]  P. Bentler,et al.  Comparative fit indexes in structural models. , 1990, Psychological bulletin.

[29]  R. P. McDonald,et al.  Choosing a multivariate model: Noncentrality and goodness of fit. , 1990 .

[30]  Albert Satorra,et al.  Model Conditions for Asymptotic Robustness in the Analysis of Linear Relations , 1990 .

[31]  P. Bentler,et al.  Robustness of normal theory statistics in structural equation models , 1991 .

[32]  M. Browne,et al.  Alternative Ways of Assessing Model Fit , 1992 .

[33]  James C. Anderson,et al.  Monte Carlo Evaluations of Goodness of Fit Indices for Structural Equation Models , 1992 .

[34]  Y Kano,et al.  Can test statistics in covariance structure analysis be trusted? , 1992, Psychological bulletin.

[35]  Robert C. MacCallum,et al.  Effect of Estimation Method on Incremental Fit Indexes for Covariance Structure Models , 1993 .

[36]  J. S. Long,et al.  Testing Structural Equation Models , 1993 .

[37]  S A Mulaik,et al.  Trait Ratings from Descriptions of Behavior As Mediated by Components of Meaning. , 1993, Multivariate behavioral research.

[38]  Herbert W. Marsh,et al.  Goodness of fit in confirmatory factor analysis: The effects of sample size and model parsimony , 1994 .

[39]  H. Marsh Δ2 and χ2 I2 fit indices for structural equation models: A brief note of clarification , 1995 .

[40]  P. Bentler,et al.  Evaluating model fit. , 1995 .

[41]  L. Harlow,et al.  Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices , 1995 .

[42]  P. Bentler,et al.  Covariance structure analysis: statistical practice, theory, and directions. , 1996, Annual review of psychology.

[43]  H. Marsh,et al.  An evaluation of incremental fit indices: A clarification of mathematical and empirical properties. , 1996 .

[44]  S. West,et al.  The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. , 1996 .

[45]  R. MacCallum,et al.  Power analysis and determination of sample size for covariance structure modeling. , 1996 .

[46]  Edward E. Rigdon,et al.  CFI versus RMSEA: A comparison of two fit indexes for structural equation modeling , 1996 .

[47]  H. Marsh,et al.  Assessing Goodness of Fit: Is Parsimony Always Desirable? , 1996 .

[48]  P. Bentler,et al.  Fit indices in covariance structure modeling : Sensitivity to underparameterized model misspecification , 1998 .