Analysis of sensor fusion solutions for UAV platfoms

Evaluation of Unmanned Aerial Vehicle (UAV) systems is mostly based on simulation tools that are manually configured to analyse the system output. In this work, the authors present an original method to evaluate the perfor-mance of UAV platform in real situations based on available data. The main innovation is an evaluation for designing sensor fusion parameters using real performance indicators of accuracy of navigation in UAVs based on PixHawk flight controller and peripherals. This platform allows physical integration of the main types of sensors in UAV domain, and at the same time the use of powerful simulation models developed with Gazebo. This methodology and selected performance indicators allows to select the best parameters for the fusion system of a determined configuration of sensors and a predefined real mission. Keywords— UAVs sensor fusion, EKF, Real Data Analysis,

[1]  Congxiao Wang,et al.  A hierarchical pattern of urban social vulnerability in Shanghai, China and its implications for risk management , 2018, Sustainable Cities and Society.

[2]  Edward Venator,et al.  UAV obstacle avoidance using image processing techniques , 2012, 2012 IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

[3]  Youdan Kim,et al.  UAV guidance using a monocular-vision sensor for aerial target tracking , 2014 .

[4]  Jay A. Farrell,et al.  Aided Navigation: GPS with High Rate Sensors , 2008 .

[5]  Samuel J. Davey,et al.  Tracking system performance assessment , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[6]  Giancarmine Fasano,et al.  Sense and avoid for unmanned aircraft systems , 2016, IEEE Aerospace and Electronic Systems Magazine.

[7]  Ali Broumandan,et al.  Feature article: An approach to detect GNSS spoofing , 2017, IEEE Aerospace and Electronic Systems Magazine.

[8]  Arthur W. Babister,et al.  Aircraft dynamic stability and response , 1980 .

[9]  Jonghyuk Kim,et al.  Compressed fusion of GNSS and inertial navigation with simultaneous localization and mapping , 2017, IEEE Aerospace and Electronic Systems Magazine.

[10]  Pierre Demartines,et al.  Kohonen Self-Organizing Maps: Is the Normalization Necessary? , 1992, Complex Syst..

[11]  S. Ki,et al.  Social vulnerability at a local level around the Merapi volcano , 2016 .

[12]  Mark Gahegan,et al.  Geospatial Cyberinfrastructure: Past, present and future , 2010, Comput. Environ. Urban Syst..

[13]  Shubi Zhang,et al.  A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation , 2016, Sensors.

[14]  Demoz Gebre-Egziabher,et al.  Design for graceful degradation and recovery from GNSS interruptions , 2017, IEEE Aerospace and Electronic Systems Magazine.

[15]  Alfred Stein,et al.  Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data , 2009 .

[16]  Jesús García,et al.  Context-Aided Sensor Fusion for Enhanced Urban Navigation , 2012, Sensors.

[17]  Fakhri Karray,et al.  Multisensor data fusion: A review of the state-of-the-art , 2013, Inf. Fusion.

[18]  Tsung-Chih Hsiao,et al.  Factor Knowledge Mining Using the Techniques of AI Neural Networks and Self-Organizing Map , 2015, Int. J. Distributed Sens. Networks.

[19]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[20]  Thomas Leduc,et al.  Towards Urban Fabrics Characterization Based on Buildings Footprints , 2012, AGILE Conf..

[21]  Eric Tate,et al.  Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis , 2012, Natural Hazards.

[22]  Helmut Strasser,et al.  On the Asymptotic Theory of Permutation Statistics , 1999 .

[23]  A. Yeh Urban Planning and GIS , 1998 .

[24]  C. Halbich,et al.  GIS as spatial decision support system , 2011 .

[25]  Peter G. W. Keen,et al.  Decision support systems: The next decade , 1987, Decis. Support Syst..

[26]  Arto Visala,et al.  A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs , 2015 .

[27]  S. Mullainathan,et al.  Behavior and Energy Policy , 2010, Science.

[28]  Jesús García,et al.  A Simulation Framework for UAV Sensor Fusion , 2010, HAIS.

[29]  Francisco Javier Abarca-Álvarez,et al.  Cartografías semánticas mediante redes neuronales: los mapas auto-organizados (SOM) como representación de patrones y campos , 2013 .

[30]  George Stavrakakis,et al.  Review on methodologies for energy benchmarking, rating and classification of buildings , 2011 .

[31]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[32]  Anatolii Leukhin,et al.  Millimeter wave array for UAV imaging MIMO radar , 2015, 2015 16th International Radar Symposium (IRS).

[33]  Thia Kirubarajan,et al.  Performance measures for multiple target tracking problems , 2011, 14th International Conference on Information Fusion.

[34]  Jean-Claude Thill,et al.  Visual Data Mining in Spatial Interaction Analysis with Self-Organizing Maps , 2009 .

[35]  Wei Gao,et al.  A Strapdown Interial Navigation System/Beidou/Doppler Velocity Log Integrated Navigation Algorithm Based on a Cubature Kalman Filter , 2014, Sensors.

[36]  Jesús García,et al.  Quality-of-service metrics for evaluating sensor fusion systems without ground truth , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[37]  Paul D. Groves,et al.  Navigation Using Inertial Sensors , 2015 .

[38]  J. Wyatt Decision support systems. , 2000, Journal of the Royal Society of Medicine.

[39]  David M. Bevly,et al.  GPS spoofing detection and mitigation using Cooperative Adaptive Cruise Control system , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[40]  Aníbal Ollero,et al.  Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation , 2017, Sensors.

[41]  Zhengwei Li,et al.  Methods for benchmarking building energy consumption against its past or intended performance: An overview , 2014 .

[42]  Miguel Molina-Solana,et al.  Data science for building energy management: A review , 2017 .

[43]  Yiqing Yao,et al.  A RLS-SVM Aided Fusion Methodology for INS during GPS Outages , 2017, Sensors.

[44]  Peng-Cheng Ma,et al.  GNSS Receiver Anti-spoofing Techniques: A Review and Future Prospects , 2016 .

[45]  Qi Cheng,et al.  A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults , 2017, Sensors.

[46]  T. Kohonen,et al.  Self-organizing semantic maps , 1989, Biological Cybernetics.

[47]  Jean-Claude Thill,et al.  Social area analysis, data mining, and GIS , 2008, Comput. Environ. Urban Syst..

[48]  Mark S. Silver On the Design Features of Decision Support Systems: The Role of System Restrictiveness and Decisional Guidance , 2008 .

[49]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[50]  Kenneth R Britting,et al.  Inertial navigation systems analysis , 1971 .

[51]  Erik P. Blasch,et al.  Fusion metrics for dynamic situation analysis , 2004, SPIE Defense + Commercial Sensing.

[52]  A. Skupin,et al.  Self-organising maps : applications in geographic information science , 2008 .

[53]  Sungsu Lee,et al.  Assessment of social vulnerability to natural hazards in South Korea: case study for typhoon hazard , 2017, Spatial Information Research.

[54]  C. Soto,et al.  Magnitud del Efecto: Una guía para investigadores y usuarios , 2003 .

[55]  N. Lazar,et al.  The ASA Statement on p-Values: Context, Process, and Purpose , 2016 .