Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods
暂无分享,去创建一个
[1] A. Laub,et al. The singular value decomposition: Its computation and some applications , 1980 .
[2] M. Renaud. Calcul de la matrice Jacobienne nécessaire à la commande coordonnée d'un manipulateur , 1980 .
[3] J. Hollerbach,et al. Wrist-Partitioned, Inverse Kinematic Accelerations and Manipulator Dynamics , 1983 .
[4] J. Denavit,et al. A kinematic notation for lowerpair mechanism based on matrices , 1955 .
[5] J. Y. S. Luh,et al. Resolved-acceleration control of mechanical manipulators , 1980 .
[6] G. Stewart. On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .
[7] Richard Paul,et al. Manipulator Cartesian Path Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[8] Roy Featherstone. Calculation of robot joint rates and actuator torques from end effector velocities and applied forces , 1983 .
[9] Charles A. Klein,et al. Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.
[10] J. Y. S. Luh,et al. On-Line Computational Scheme for Mechanical Manipulators , 1980 .
[11] W. W. Schrader,et al. Efficient Computation of the Jacobian for Robot Manipulators , 1984 .
[12] Daniel E. Whitney,et al. Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .
[13] D. E. Whitney,et al. The mathematics of coordinated control of prosthetic arms and manipulators. , 1972 .
[14] A. Liegeois,et al. Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .