Fractal dual substitution tilings

Starting with a substitution tiling, we demonstrate a method for constructing infinitely many new substitution tilings. Each of these new tilings is derived from a graph iterated function system and the tiles have fractal boundary. We show that each of the new tilings is mutually locally derivable to the original tiling. Thus, at the tiling space level, the new substitution rules are expressing geometric and combinatorial, rather than topological, features of the original. Our method is easy to apply to particular substitution tilings, permits experimentation, and can be used to construct border-forcing substitution rules. For a large class of examples we show that the combinatorial dual tiling has a realization as a substitution tiling. Since the boundaries of our new tilings are fractal we are led to compute their fractal dimension. As an application of our techniques we show how to compute the \v{C}ech cohomology of a (not necessarily border-forcing) tiling using a graph iterated function system of a fractal tiling.

[1]  L. Sadun,et al.  Cohomology of substitution tiling spaces , 2008, Ergodic Theory and Dynamical Systems.

[2]  I. Putnam,et al.  A proof of the gap labeling conjecture , 2002, math/0205102.

[3]  C. Bandt,et al.  Fractal Penrose tilings, I. Construction and matching rules , 1996 .

[4]  Hao Wang,et al.  Proving theorems by pattern recognition I , 1960, Commun. ACM.

[5]  R. Penrose Pentaplexity A Class of Non-Periodic Tilings of the Plane , 1979 .

[6]  Boris Solomyak,et al.  Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..

[7]  Andrew Vince,et al.  Fractal Tilings from Iterated Function Systems , 2014, Discret. Comput. Geom..

[8]  G. A. Edgar,et al.  A FRACTAL DIMENSION ESTIMATE FOR A GRAPH-DIRECTED ITERATED FUNCTION SYSTEMOF NON-SIMILARITIES , 1999 .

[9]  Alan L. Mackay,et al.  Crystallography and the penrose pattern , 1982 .

[10]  J. Gambaudo,et al.  Communications in Mathematical Physics Spaces of Tilings , Finite Telescopic Approximations and Gap-Labeling , 2005 .

[11]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[12]  A. V. Elst GAP-LABELLING THEOREMS FOR SCHRÖDINGER OPERATORS ON THE SQUARE AND CUBIC LATTICE , 1994 .

[13]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[14]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[15]  Michael Baake,et al.  Aperiodic Order: Preliminaries , 2013 .

[16]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[17]  Barry Mazur,et al.  Algebraic Numbers By , 2005 .

[18]  Richard Kenyon The construction of self-similar tilings , 1995 .

[19]  Lorenzo Sadun,et al.  Topology of tiling spaces , 2008 .

[20]  Robert L. Berger The undecidability of the domino problem , 1966 .

[21]  Natalie Priebe Frank,et al.  A Fractal Version of the Pinwheel Tiling , 2010, 1001.2203.

[22]  C. Bandt,et al.  Fractal Penrose tilings I. Construction and matching rules , 1996 .

[23]  Pierre Arnoux,et al.  Algebraic numbers, free group automorphisms and substitutions on the plane , 2011 .

[24]  N. Priebe,et al.  Characterization of Planar Pseudo-Self-Similar Tilings , 2001, Discret. Comput. Geom..

[25]  Gap-labelling for quasi-crystals (proving a conjecture by J. Bellissard) , 2001, math/0112113.

[26]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[27]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[28]  Alain Connes,et al.  Noncommutative geometry , 1994 .

[29]  Jeong-Yup Lee,et al.  Lattice substitution systems and model sets , 2001, Discret. Comput. Geom..

[30]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .