Thermal spraying of biomaterials

Osteoconductive hydroxyapatite coatings for metallic endoprostheses for hip and knee joint replacement provide a state-of-the-art template for enhanced in-growth of bone cells. However, the high temperature of the plasma jet leads to large scale dehydroxylation and decomposition of the starting powder. A model is being developed to explain the formation of chemically and mechanically inhomogeneous porous calcium phosphate coatings deposited by atmospheric plasma spraying onto titanium alloy substrates. In addition the biofunctionality is being discussed of titania bond coats and their influence on the in vivo performance of hydroxyapatite-titania duplex coating systems.

[1]  R. Heimann,et al.  In vitro and in vivo performance of Ti6Al4V implants with plasma-sprayed osteoconductive hydroxylapatite–bioinert titania bond coat “duplex” systems: an experimental study in sheep , 2004, Journal of materials science. Materials in medicine.

[2]  D. Beruto,et al.  Influence of electromagnetic fields on the microstructure of precipitated calcium phosphate nanometric-Grains , 1999 .

[3]  Jm Jos Houben Relation of the adhesion of plasma sprayed coatings to the process parameters size, velocity and heat content of the spray particles , 1988 .

[4]  R. Heimann,et al.  Adhesion of thermally sprayed hydroxyapatite–bond-coat systems measured by a novel peel test , 1998, Journal of materials science. Materials in medicine.

[5]  P M Marquis,et al.  Dissolution behavior of plasma-sprayed hydroxyapatite coatings , 2000, Journal of materials science. Materials in medicine.

[6]  R. Pilliar,et al.  Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. , 1991, Journal of biomedical materials research.

[7]  L. Pawłowski,et al.  Corrigendum to “Numerical simulation of hydroxyapatite powder behaviour in plasma jet” [Surf. Coat. Technol. 179 (2004) 110–117] , 2004 .

[8]  J. Beumer,et al.  Raman microprobe investigation of the calcium phosphate phases of three commercially available plasma-flame-sprayed hydroxyapatite-coated dental implants , 1992 .

[9]  J. Ricci,et al.  A new canine model to evaluate the biological response of intramedullary bone to implant materials and surfaces. , 1990, Journal of biomedical materials research.

[10]  J. Weng,et al.  Thermal decomposition of hydroxyapatite structure induced by titanium and its dioxide , 1994 .

[11]  R. Heimann,et al.  Laser‐Raman and Nuclear Magnetic Resonance (NMR) studies on plasma‐sprayed hydroxylapatite coatings: Influence of bioinert bond coats on phase composition and resorption kinetics in simulated body fluid , 2003 .

[12]  R. Heimann,et al.  Microstructural and in vitro chemical investigations into plasma-sprayed bioceramic coatings. , 1998, Journal of biomedical materials research.

[13]  E. Chang,et al.  Plasma-sprayed zirconia bond coat as an intermediate layer for hydroxyapatite coating on titanium alloy substrate , 2002, Journal of materials science. Materials in medicine.

[14]  J. Trombe,et al.  Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice—III Synthesis and properties of some oxygenated apatites , 1978 .

[15]  P. Tranquilli,et al.  Evaluation of different preparations of plasma-spray hydroxyapatite coating on titanium alloy and duplex stainless steel in the rabbit , 1994 .

[16]  J. Lacout,et al.  Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings , 2003 .

[17]  C. Berndt,et al.  Oxyapatite in hydroxyapatite coatings , 1998 .

[18]  R. Heimann,et al.  Bioceramic coatings; state-of-the art and recent development trends , 1997 .

[19]  S. Downes,et al.  Comparison of the early production of extracellular matrix on dense hydroxyapatite and hydroxyapatite-coated titanium in cell and organ culture. , 1995, Biomaterials.

[20]  D. Hoelzer,et al.  Interfacial characterization of plasma-spray coated calcium phosphate on Ti–6Al–4V , 1998, Journal of materials science. Materials in medicine.

[21]  Y. Leng,et al.  Chemical gradient in plasma-sprayed HA coatings. , 2000, Biomaterials.

[22]  Robert B. Heimann,et al.  Plasma-Spray Coating: Principles and Applications , 1996 .

[23]  K. Yamashita,et al.  Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling , 1996 .

[24]  O. Sbaizero,et al.  Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings. , 1997, Biomaterials.

[25]  R. Heimann,et al.  Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. , 2006, Biomaterials.

[26]  H. Cameron Bone Implant Interface , 1994 .

[27]  B. Gyorffy,et al.  Crystals: Growth, Properties and Applications , 1981 .

[28]  L. Pawłowski,et al.  Numerical simulation of hydroxyapatite powder behaviour in plasma jet , 2004 .

[29]  R. Mcpherson On the formation of thermally sprayed alumina coatings , 1980 .

[30]  C. Tsai,et al.  Characteristics and osteoconductivity of three different plasma-sprayed hydroxyapatite coatings , 1993 .

[31]  G. S. Carvalho,et al.  Chromium accumulation and ultrastructural changes in the mouse liver caused by stainless steel corrosion products , 1995 .

[32]  C. Doyle,et al.  Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels. , 1998, Biomaterials.

[33]  Yu-peng Lu,et al.  Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. , 2004, Biomaterials.

[34]  Hyoun‐Ee Kim,et al.  Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. , 2004, Biomaterials.

[35]  B. Wu,et al.  Bond degradation at the plasma-sprayed HA coating/Ti-6AI-4V alloy interface: an in vitro study , 1995 .

[36]  T. Kijima,et al.  Preparation and Thermal Properties of Dense Polycrystalline Oxyhydroxyapatite , 1979 .

[37]  R. B. Heimann,et al.  In vivo-Untersuchungen zur Osseointegration von Hydroxylapatit-beschichteten Ti6Al4VImplantaten mit und ohne bioinerter Titanoxid-Haftvermittlerschicht , 2004 .

[38]  Hua Li,et al.  Thermal sprayed hydroxyapatite splats: nanostructures, pore formation mechanisms and TEM characterization. , 2004, Biomaterials.

[39]  C. Rey,et al.  Progres dans le domaine de la chimie des composes phosphores solides a structure d'apatite. Application a la biologie et au traitement des minerais , 1980 .

[40]  Jens Götze,et al.  Charakterisierung des in-vitro-Resorptionsverhaltens von plasmagespritzten Hydroxylapatit-Schichten , 2001 .

[41]  S. Radin,et al.  The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. , 1993, Journal of biomedical materials research.

[42]  P. Frayssinet,et al.  Comparative biological properties of HA plasma-sprayed coatings having different crystallinities , 1994 .

[43]  F. Lin,et al.  Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. , 1999, Biomaterials.

[44]  H. Worch,et al.  Biokompatible Werkstoffe und Bauweisen. Implantate für Medizin und Umwelt , 1997 .

[45]  E. Park,et al.  Graded coating of hydroxyapatite and titanium by atmospheric plasma spraying , 1999 .

[46]  R Z LeGeros,et al.  Biodegradation and bioresorption of calcium phosphate ceramics. , 1993, Clinical materials.

[47]  C. V. van Blitterswijk,et al.  Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. , 1994, Biomaterials.

[48]  C. Klein,et al.  Plasma sprayed coatings of hydroxylapatite. , 1987, Journal of biomedical materials research.

[49]  R. Heimann,et al.  Compositional and microstructural changes of engineered plasma-sprayed hydroxyapatite coatings on Ti6Al4V substrates during incubation in protein-free simulated body fluid. , 2000, Journal of biomedical materials research.

[50]  P. Fauchais,et al.  Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coatings , 1982 .

[51]  John E. Davies,et al.  The bone-biomaterial interface , 1991 .

[52]  Masakazu Kawashita,et al.  Novel bioactive materials with different mechanical properties. , 2003, Biomaterials.

[53]  J. Alamo Chemistry and properties of solids with the [NZP] skeleton , 1993 .

[54]  R. Heimann,et al.  Biomimetic processes during in vitro leaching of plasma‐sprayed hydroxyapatite coatings for endoprosthetic applications , 2001 .

[55]  W. Wagner,et al.  Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. , 1999, Biomaterials.

[56]  T. Kokubo Surface chemistry of bioactive glass-ceramics , 1990 .

[57]  C. Berndt,et al.  Thermal Analysis of Amorphous Phases in Hydroxyapatite Coatings , 2005 .

[58]  Erich Wintermantel,et al.  Biokompatible Werkstoffe und Bauweisen , 1996 .

[59]  R. B. Heimann,et al.  Design of novel plasma sprayed hydroxyapatite-bond coat bioceramic systems , 1999 .

[60]  N. Gane,et al.  Structural characterization of plasma-sprayed hydroxylapatite coatings , 1995 .

[61]  R. Cuscó,et al.  Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy , 1998 .

[62]  R. Heimann,et al.  Microstructural investigation into calcium phosphate biomaterials by spatially resolved cathodoluminescence , 2001 .

[63]  R. B. Heimann,et al.  Recent trends towards improved plasma-sprayed advanced bioceramic coatings on Ti6Al4V implants , 1999 .

[64]  C. Berndt,et al.  Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. , 1998, Journal of biomedical materials research.

[65]  M. Spector,et al.  Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. , 2004, Biomaterials.

[66]  A. Jarfors,et al.  Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. , 2005, Biomaterials.

[67]  R. Heimann,et al.  Hydroxyapatite coatings with a bond coat of biomedical implants by plasma projection , 1996 .

[68]  C. B. Ponton,et al.  Microstructural characterization of hydroxyapatite coating on titanium , 1992 .

[69]  Donghun Lee,et al.  Characterization of hydroxyapatite: Before and after plasma spraying , 2002, Journal of materials science. Materials in medicine.

[70]  R. Heimann,et al.  Low-pressure plasma-sprayed (LPPS) bioceramic coatings with improved adhesion strength and resorption resistance , 1997 .

[71]  C. Klein,et al.  Studies of the solubility of different calcium phosphate ceramic particles in vitro. , 1990, Biomaterials.

[72]  P. Hartmann,et al.  Solid State NMR, X-Ray Diffraction, and Infrared Characterization of Local Structure in Heat-Treated Oxyhydroxyapatite Microcrystals: An Analog of the Thermal Decomposition of Hydroxyapatite during Plasma-Spray Procedure , 2001 .