Structures, Rugged Energetic Landscapes, and Nanothermodynamics of Aln (2 ≤ n ≤ 65) Particles

Metal nanoparticles are important in several emerging technologies, but their size-selected thermodynamic properties are hard to obtain from experiment. We have characterized the energetic and structural properties of unsupported neutral Aln (2 ≤ n ≤ 65) particles (clusters and nanoparticles) via molecular dynamics quenching simulations with a recently validated many-body analytic potential. For each particle size (n), the global minimum-energy structure, the distribution of the local energy minima, and the finite-temperature thermodynamics have been calculated, the latter by evaluating ∼100 000 rovibrational partition functions for the low-energy isomers of the various particles. This analysis demonstrates that the dominant structures of clusters and nanoparticles depend on temperature as well as particle size and that one must consider statistical mechanics as well as electronic structure in determining the dominant structures, stabilities, and properties of nanoparticles. As a particularly dramatic exa...

[1]  C. Foss,et al.  Metal Nanoparticles: Synthesis, Characterization, and Applications , 2001 .

[2]  Jan‐Ole Joswig,et al.  Genetic-algorithms search for global minima of aluminum clusters using a Sutton-Chen potential , 2003 .

[3]  Donald G. Truhlar,et al.  Analytic Potential Energy Functions for Aluminum Clusters , 2004 .

[4]  Donald G. Truhlar,et al.  Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory , 2003 .

[5]  A. Shvartsburg,et al.  Statistical evaluation of the big bang search algorithm , 2006 .

[7]  Jonathan P. K. Doye,et al.  Stationary points and dynamics in high-dimensional systems , 2003 .

[8]  L. Pettersson,et al.  Small Al clusters. II. Structure and binding in Aln (n=2–6, 13) , 1987 .

[9]  T. L. Hill,et al.  Extension of the thermodynamics of small systems to open metastable states: an example. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Berry,et al.  Structural transitions in small molecular clusters , 1999 .

[11]  Adrian E. Roitberg,et al.  Strontium clusters: Many-body potential, energetics, and structural transitions , 2001 .

[12]  Farrington Daniels,et al.  Physical Chemistry, 2nd Ed. , 1961 .

[13]  Zdenka Barticevic,et al.  Far‐infrared optical spectrum of donor impurities in quantum dots in a magnetic field , 2003 .

[14]  U. Buck,et al.  Cluster size determination from diffractive He atom scattering , 1996 .

[15]  J. A. Alonso Structure and Properties of Atomic Nanoclusters , 2005 .

[16]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[17]  Roy L. Johnston,et al.  Investigation of geometric shell aluminum clusters using the Gupta many-body potential , 2000 .

[18]  F. Baletto,et al.  Dynamical effects in the formation of magic cluster structures , 2004 .

[19]  F Calvo,et al.  Entropic effects on the size dependence of cluster structure. , 2001, Physical review letters.

[20]  M. Jarrold,et al.  Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. , 2005, Physical review letters.

[21]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[22]  E. Bernstein Chemical reactions in clusters , 1992 .

[23]  Donald G Truhlar,et al.  Analytic potential energy functions for simulating aluminum nanoparticles. , 2005, The journal of physical chemistry. B.

[24]  Molecular-Dynamics Computer Simulation of Aluminum Clusters (Aln; n = 3 to 55). Empirical Many-Body Potential Energy Function Calculation , 1992 .

[25]  A. Sutton,et al.  Long-range Finnis–Sinclair potentials , 1990 .

[26]  F Baletto,et al.  Magic polyicosahedral core-shell clusters. , 2004, Physical review letters.

[27]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[28]  T. L. Hill,et al.  Thermodynamics of Small Systems , 2002 .

[29]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[30]  C. Z. Wang,et al.  Structure of neutral aluminum clusters Al n (2⩽n⩽23) : Genetic algorithm tight-binding calculations , 2006 .

[31]  Inherent structures and Kauzmann temperature of confined liquids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[33]  T. L. Hill,et al.  An Introduction to Statistical Thermodynamics , 1960 .

[34]  Mixing distributions within the quasi-Gaussian entropy theory: Multistate thermal equations of state valid for large temperature ranges , 2003 .

[35]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[36]  Edward Teller,et al.  Electronic Spectra of Polyatomic Molecules , 1941 .

[37]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[38]  Phase behavior of elemental aluminum using monte carlo simulations. , 2005, The journal of physical chemistry. B.

[39]  B. Rao,et al.  Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis , 1999 .

[40]  J. Ro Structure and bonding in small aluminum clusters. , 1991 .

[41]  M. Manninen,et al.  Heating of Al 13 ¿ and Al 14 clusters , 2001 .

[42]  Potential-energy-landscape-based extended van der Waals equation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Simon D. Elliott,et al.  Clusters of aluminium, a density functional study , 1999 .

[44]  Julius Jellinek,et al.  Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses , 2005 .

[45]  Thomas M Truskett,et al.  The equation of state of an energy landscape , 1999 .

[46]  D. Truhlar,et al.  Legendre moment method for calculating differential scattering cross sections from classical trajectories with Monte Carlo initial conditions , 1977 .

[47]  D. Truhlar,et al.  Validation of Theoretical Methods for the Structure and Energy of Aluminum Clusters , 2004 .

[48]  A. Goldberg,et al.  On the temperature, equipartition, degrees of freedom, and finite size effects: Application to aluminum clusters , 2000 .

[49]  Cheng,et al.  Electronic structure and binding energies of aluminum clusters. , 1991, Physical review. B, Condensed matter.

[50]  Jun Yu Li,et al.  Au34-: A Fluxional Core−Shell Cluster , 2007 .

[51]  Lesley D. Lloyd,et al.  Modelling aluminium clusters with an empirical many-body potential , 1998 .

[52]  J. Murrell,et al.  Potential energy functions for atomic solids , 1990 .

[53]  Global minima of AlN, AuN and PtN, N ⩽ 80, clusters described by the Voter–Chen version of embedded-atom potentials , 2004, physics/0407106.