Solving the Hamiltonian Cycle Problem using a Quantum Computer

We review existing quantum computational methods for solving the Hamiltonian cycle problem in different computational frameworks such as quantum circuits, quantum walks and adiabatic quantum computation. Then we present a QUBO (quadratic unconstrained binary optimization) formulation, which is suitable for the adiabatic quantum computation for a D-Wave architecture. Further, we derive a physical Hamiltonian from the QUBO formulation and discuss its adequateness in the adiabatic framework. Finally, we discuss the complexity of running the Hamiltonian cycle QUBO on a D-Wave quantum computer, and compare it with existing quantum computational methods.

[1]  Michael J. Dinneen,et al.  Formulating graph covering problems for adiabatic quantum computers , 2017, ACSW.

[2]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[3]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[4]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[5]  J. B. Wang,et al.  Efficient quantum circuits for Toeplitz and Hankel matrices , 2016, 1605.07710.

[6]  J. Traub,et al.  Quantum algorithm and circuit design solving the Poisson equation , 2012, 1207.2485.

[7]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[8]  John L. Casti,et al.  Introduction to unconventional models of computation , 1998 .

[9]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms versus Simulated Annealing , 2002, quant-ph/0201031.

[10]  Saurya Das,et al.  Adiabatic quantum computation and Deutsch's algorithm , 2001, quant-ph/0111032.

[11]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[12]  Davide Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015, 1506.08479.

[13]  Paul Benioff Space Searches with a Quantum Robot , 2000 .

[14]  Lei He,et al.  A quantum annealing approach for Boolean Satisfiability problem , 2016, 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[15]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[16]  Andreas Björklund,et al.  Determinant Sums for Undirected Hamiltonicity , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[17]  Cristian S. Calude,et al.  QUBO formulations for the graph isomorphism problem and related problems , 2017, Theor. Comput. Sci..

[18]  Fabián A. Chudak,et al.  The Ising model : teaching an old problem new tricks , 2010 .

[19]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[20]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[21]  LongGui-Lu,et al.  A Quantum Algorithm for Finding a Hamilton Circuit , 2001 .

[22]  Michael Haythorpe,et al.  Markov Chain Based Algorithms for the Hamiltonian Cycle Problem , 2013 .

[23]  Catherine C. McGeoch Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , 2014, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice.

[24]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[25]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Itay Hen,et al.  Period finding with adiabatic quantum computation , 2013, 1307.6538.

[27]  Jingbo B. Wang,et al.  Physical Implementation of Quantum Walks , 2013 .

[28]  Harry Buhrman,et al.  Quantum verification of matrix products , 2004, SODA '06.

[29]  Sebastian Dörn,et al.  Quantum Algorithms for Graph Traversals and Related Problems , 2007 .

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  Edward Farhi,et al.  HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005 .

[32]  Cristian S. Calude,et al.  Solving the Broadcast Time Problem Using a D-wave Quantum Computer , 2017 .

[33]  Vivien M. Kendon,et al.  The expressive power of quantum walks in terms of language acceptance , 2012, QPL.

[34]  Sandor Imre,et al.  Quantum Computing and Communications: An Engineering Approach , 2005 .

[35]  Cristian S. Calude,et al.  A Hybrid Quantum-Classical Paradigm to Mitigate Embedding Costs in Quantum Annealing , 2018, PC@UCNC.

[36]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[37]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[38]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[39]  Christian F. A. Negre,et al.  Graph Partitioning using Quantum Annealing on the D-Wave System , 2017, ArXiv.

[40]  Dieter Suter,et al.  Quantum adiabatic algorithm for factorization and its experimental implementation. , 2008, Physical review letters.

[41]  C M Lee,et al.  DNA computing the Hamiltonian path problem. , 1999, Molecules and cells.

[42]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[43]  Cristian S. Calude,et al.  Guest Column: Adiabatic Quantum Computing Challenges , 2015, SIGA.

[44]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[45]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[46]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[47]  Catherine C. McGeoch,et al.  Quantum Annealing amid Local Ruggedness and Global Frustration , 2017, Journal of the Physical Society of Japan.

[48]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[49]  Gregor Tanner,et al.  Quantum search algorithms on the hypercube , 2009, 0906.3094.

[50]  Mihai Oltean,et al.  Solving the Hamiltonian path problem with a light-based computer , 2007, Natural Computing.