Good coupling for the multiscale patch scheme on systems with microscale heterogeneity

Abstract Computational simulation of microscale detailed systems is frequently only feasible over spatial domains much smaller than the macroscale of interest. The ‘equation-free’ methodology couples many small patches of microscale computations across space to empower efficient computational simulation over macroscale domains of interest. Motivated by molecular or agent simulations, we analyse the performance of various coupling schemes for patches when the microscale is inherently ‘rough’. As a canonical problem in this universality class, we systematically analyse the case of heterogeneous diffusion on a lattice. Computer algebra explores how the dynamics of coupled patches predict the large scale emergent macroscale dynamics of the computational scheme. We determine good design for the coupling of patches by comparing the macroscale predictions from patch dynamics with the emergent macroscale on the entire domain, thus minimising the computational error of the multiscale modelling. The minimal error on the macroscale is obtained when the coupling utilises averaging regions which are between a third and a half of the patch. Moreover, when the symmetry of the inter-patch coupling matches that of the underlying microscale structure, patch dynamics predicts the desired macroscale dynamics to any specified order of error. The results confirm that the patch scheme is useful for macroscale computational simulation of a range of systems with microscale heterogeneity.

[1]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[2]  Irina Goryacheva Multiscale Modelling in Contact Mechanics , 2009 .

[3]  Panayotis G. Kevrekidis,et al.  Deciding the Nature of the Coarse Equation through Microscopic Simulations: The Baby-Bathwater Scheme , 2007, SIAM Rev..

[4]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[5]  Stephan Knapek,et al.  Matrix-Dependent Multigrid Homogenization for Diffusion Problems , 1998, SIAM J. Sci. Comput..

[6]  Vadim V. Silberschmidt,et al.  Account for Random Microstructure in Multiscale Models , 2008 .

[7]  Richard J. Fateman Comparing the speed of programs for sparse polynomial multiplication , 2003, SIGS.

[8]  David H. Allen,et al.  Multiscale Modeling and Simulation of Composite Materials and Structures , 2008 .

[9]  Anthony J. Roberts,et al.  Patch dynamics for macroscale modelling in one dimension , 2012 .

[10]  Ioannis G. Kevrekidis,et al.  General Tooth Boundary Conditions for Equation Free Modeling , 2006, SIAM J. Sci. Comput..

[11]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[12]  Constantinos Theodoropoulos,et al.  Effective bifurcation analysis: a time-stepper-based approach , 2002 .

[13]  Giovanni Samaey,et al.  Equation-free computation: an overview of patch dynamics , 2009 .

[14]  Giovanni Samaey,et al.  Equation-free multiscale computation: algorithms and applications. , 2009, Annual review of physical chemistry.

[15]  Anthony J. Roberts,et al.  Holistic discretization ensures fidelity to Burgers' equation , 2001 .

[16]  Geralf Hütter,et al.  Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage , 2015 .

[17]  B. Aulbach,et al.  The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces , 2000 .

[18]  Sidney Yip,et al.  Nearly exact solution for coupled continuum/MD fluid simulation , 1999 .

[19]  T. MacKenzie,et al.  A dynamical systems approach to simulating macroscale spatial dynamics in multiple dimensions , 2013, Journal of Engineering Mathematics.

[20]  D. Cheban,et al.  Global Attractors Of Non-autonomous Dissipative Dynamical Systems , 2004 .

[21]  Giovanni Samaey,et al.  Combining the Gap-Tooth Scheme with Projective Integration: Patch Dynamics , 2005 .

[22]  Bogdan Vernescu,et al.  Homogenization methods for multiscale mechanics , 2010 .

[23]  Mark F. Horstemeyer,et al.  Multiscale Modeling: A Review , 2009 .

[24]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[25]  Anthony J. Roberts,et al.  A holistic finite difference approach models linear dynamics consistently , 2000, Math. Comput..

[26]  Björn Engquist,et al.  A Multiscale Method Coupling Network and Continuum Models in Porous Media I: Steady-State Single Phase Flow , 2012, Multiscale Model. Simul..

[27]  Ioannis G. Kevrekidis,et al.  Accuracy of Patch Dynamics with Mesoscale Temporal Coupling for Efficient Massively Parallel Simulations , 2016, SIAM J. Sci. Comput..

[28]  Pierre Ladevèze,et al.  Multiscale modelling and computational strategies for composites , 2004 .

[29]  Giovanni Samaey,et al.  Patch dynamics with buffers for homogenization problems , 2006, J. Comput. Phys..

[30]  I. G. Kevrekidis,et al.  Better buffers for patches in macroscale simulation of systems with microscale randomness , 2013 .

[31]  Panayotis G. Kevrekidis,et al.  Equation-Free, Effective Computation for Discrete Systems: a Time stepper Based Approach , 2005, Int. J. Bifurc. Chaos.

[32]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[33]  P. Mendes,et al.  Multi-scale modelling and simulation in systems biology. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[34]  Javier Rodríguez-Laguna,et al.  Renormalization Group Methods for Coarse-Graining of Evolution Equations , 2006 .

[35]  James M. Hyman Patch dynamics for multiscale problems , 2005, Computing in Science & Engineering.

[36]  George E Kapellos,et al.  Modeling Momentum and Mass Transport in Cellular Biological Media: From the Molecular to the Tissue Scale , 2013 .

[37]  Maurizio Fermeglia,et al.  Multiscale molecular modeling in nanostructured material design and process system engineering , 2009, Comput. Chem. Eng..

[38]  Steven A. Orszag,et al.  Advanced Mathematical Methods for Scientists and Engineers , 1979 .