M(2) factor of Bessel Gauss beams.

We derive the analytical expression of the M(2) factor of a Bessel-Gauss beam of any order and discuss its behavior for high and low values of the width of the Gaussian profile. The case of unapertured Bessel beams can be treated as a limiting case of our analysis.

[1]  D. R. Hall,et al.  The Physics and Technology of Laser Resonators , 2020 .

[2]  F. Gori,et al.  Shape-invariance range of a light beam. , 1996, Optics letters.

[3]  Dennis G. Hall,et al.  Diffraction characteristics of the azimuthal Bessel–Gauss beam , 1996 .

[4]  Claude Pare,et al.  Propagation law and quasi-invariance properties of the truncated second-order moment of a diffracted laser beam , 1996 .

[5]  M. Porras,et al.  Entropy-based definition of laser beam spot size. , 1995, Applied optics.

[6]  J. Greenleaf,et al.  Application of Bessel beam for Doppler velocity estimation , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  Anthony E. Siegman,et al.  Defining the effective radius of curvature for a nonideal optical beam , 1991 .

[8]  P. Bélanger,et al.  Beam propagation and the ABCD ray matrices. , 1991, Optics letters.

[9]  Jari Turunen,et al.  Propagation invariance and self-imaging in variable-coherence optics , 1991 .

[10]  Anthony E. Siegman,et al.  New developments in laser resonators , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[11]  Ronald N. Bracewell The Fourier transform. , 1989, Scientific American.

[12]  E. Sudarshan,et al.  Partially coherent beams and a generalized ABCD-law , 1988 .

[13]  F. Gori,et al.  Bessel-Gauss beams , 1987 .

[14]  Franco Gori,et al.  Modal expansion for J0-correlated Schell-model sources , 1987 .

[15]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[16]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[17]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .