Optimal design of spiral-wound membrane networks for gas separations

[1]  Michael A. Henson,et al.  Optimization-based design of spiral-wound membrane systems for CO2/CH4 separations , 1998 .

[2]  Mahmoud M. El-Halwagi,et al.  Optimal design and scheduling of flexible reverse osmosis networks , 1997 .

[3]  Michael A. Henson,et al.  Modeling of spiral-wound permeators for multicomponent gas separations , 1997 .

[4]  Rakesh Agrawal,et al.  A simplified method for the synthesis of gas separation membrane cascades with limited numbers of compressors , 1997 .

[5]  R. M. Nedderman,et al.  Applied mathematics and modeling for chemical engineers , 1996 .

[6]  M. A. Henson,et al.  Approximate modeling of spiral-wound gas permeators , 1996 .

[7]  Rakesh Agrawal,et al.  Gas-separation membrane cascades utilizing limited numbers of compressors , 1996 .

[8]  Ignacio E. Grossmann,et al.  New trends in optimization-based approaches to process synthesis , 1996 .

[9]  Rakesh Agrawal,et al.  Gas separation membrane cascades I. One-compressor cascades with minimal exergy losses due to mixing , 1996 .

[10]  Rakesh Agrawal,et al.  Gas separation membrane cascades II. Two-compressor cascades , 1996 .

[11]  K. Lien,et al.  Design studies of membrane permeator processes for gas separation , 1995 .

[12]  I. Grossmann,et al.  Mixed-integer nonlinear programming techniques for process systems engineering , 1995 .

[13]  Mahmoud M. El-Halwagi,et al.  Optimal design of pervaporation systems for waste reduction , 1993 .

[14]  S. A. Stern,et al.  Membrane processes for the removal of acid gases from natural gas. II. Effects of operating conditions, economic parameters, and membrane properties , 1993 .

[15]  S. A. Stern,et al.  Membrane processes for the removal of acid gases from natural gas. I. Process configurations and optimization of operating conditions , 1993 .

[16]  A. L. Lee,et al.  Development of a database for advanced processes to remove carbon dioxide from subquality natural gas. Topical report, September 1989-May 1992 , 1993 .

[17]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[18]  S. A. Stern,et al.  A new evaluation of membrane processes for the oxygen-enrichment of air. II. Effects of economic parameters and membrane properties , 1991 .

[19]  S. A. Stern,et al.  A new evaluation of membrane processes for the oxygen-enrichment of air. I, Identification of optimum operating conditions and process configuration , 1991 .

[20]  I. Grossmann,et al.  A combined penalty function and outer-approximation method for MINLP optimization : applications to distillation column design , 1989 .

[21]  William J. Koros,et al.  Simulation of a hollow-fiber gas separator: the effects of process and design variables , 1985 .

[22]  F. Fournie,et al.  Permeation membranes can efficiently replace conventional gas treatment processes , 1985 .

[23]  C. Pan Gas separation by permeators with high‐flux asymmetric membranes , 1983 .

[24]  D. Kendrick,et al.  GAMS -- A User's Guide , 2004 .

[25]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[26]  J. P. Gamez,et al.  Field tests of membrane modules for the separation of carbon dioxide from low-quality natural gas , 1995 .

[27]  Christodoulos A. Floudas,et al.  Algorithmic approaches to process synthesis : logic and global optimization , 1994 .

[28]  R. W. Spillman,et al.  Economics of gas separation membranes , 1989 .

[29]  T. E. Cooley,et al.  Natural gas cleanup: a comparison of membrane and amine treatment processes , 1988 .

[30]  Klaus D. Timmerhaus,et al.  Plant design and economics for chemical engineers , 1958 .

[31]  Journal of Membrane Science , 2022 .