C-Band Q-Switched Fiber Laser Using Titanium Dioxide (TiO 2) As Saturable Absorber

We demonstrate a passively Q-switched erbium fiber laser using titanium dioxide (TiO2) as a saturable absorber. The TiO2 saturable absorber was fabricated as a polymer composite film and sandwiched between fiber ferrules. Q-switched pulsing starts with the assistance of physical disturbance of the laser cavity (by lightly tapping the cavity to induce instability) at 140 mW and lasts until 240 mW. The repetition rate increases with the pump power from 80.28 to 120.48 kHz. On the other hand, the pulsewidth decreases from 2.054 μs until it reaches a plateau at 1.84 μs. The Q-switched fiber laser exhibits two competing modes: at 1558.1 and 1558.9 nm as the pump power increases. A high signal-tonoise ratio of 49.65 dB is obtained.

[1]  S. Manorama,et al.  Bandgap studies on anatase titanium dioxide nanoparticles , 2003 .

[2]  Zhipei Sun,et al.  Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics , 2014 .

[3]  Zhengqian Luo,et al.  Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber. , 2014, Optics express.

[4]  S. Mirov,et al.  Highly efficient, narrow-linewidth, and single-frequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm. , 2008, Optics express.

[5]  F. Torrisi,et al.  Graphene Q-switched, tunable fiber laser , 2010, 1011.0115.

[6]  N. Katsarakis,et al.  Nonlinear optical response of titanium oxide nanostructured thin films , 2009 .

[7]  Tzong-Yow Tsai,et al.  A saturable absorber Q-switched all-fiber ring laser. , 2009, Optics express.

[8]  R. Yang,et al.  Passively Q-switching induced by gold nanocrystals , 2012 .

[9]  E. R. Taylor,et al.  Short-pulse, high-power Q-switched fiber laser , 1992, IEEE Photonics Technology Letters.

[10]  Yong Liu,et al.  Passively $Q$ -Switched Erbium-Doped Fiber Laser Based on Few-Layer MoS2 Saturable Absorber , 2015, IEEE Photonics Technology Letters.

[11]  Alexander Szameit,et al.  Photonic Topological Insulators , 2014, CLEO 2014.

[12]  David J. Richardson,et al.  Passively Q-switched 0.1mJ fiber laser system at 1.53µm , 1999 .

[13]  Kimihisa Yamamoto,et al.  Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. , 2008, Nature nanotechnology.

[14]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[15]  J. Sabbaghzadeh,et al.  Nonlinear Optical Response of Titania Nanoparticles Prepared by Pulsed Laser Ablation , 2011 .

[16]  R I Woodward,et al.  Wideband saturable absorption in few-layer molybdenum diselenide (MoSe₂) for Q-switching Yb-, Er- and Tm-doped fiber lasers. , 2015, Optics express.

[17]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[18]  N. Tanaka,et al.  Preparation of strain-included rutile titanium oxide thin films and influence of the strain upon optical properties , 2007 .

[19]  J. Yi,et al.  Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films , 2005 .

[20]  Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites , 2003, cond-mat/0301153.

[21]  Shuangchun Wen,et al.  Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. , 2015, Optics express.

[22]  E. Garmire,et al.  Resonant optical nonlinearities in semiconductors , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.

[24]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[25]  S. Wen,et al.  Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics. , 2014, Optics express.

[26]  Andrei S Kurkov,et al.  Q-switched all-fiber lasers with saturable absorbers , 2011 .

[27]  H. Long,et al.  Femtosecond Z-scan measurement of third-order optical nonlinearities in anatase TiO2 thin films , 2009 .

[28]  Meng Zhang,et al.  Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser , 2015, Nano Research.

[29]  Stuart D. Jackson,et al.  Modeling and Optimization of Cascaded Erbium and Holmium Doped Fluoride Fiber Lasers , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[31]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[32]  Liangmo Mei,et al.  Broadband Few‐Layer MoS2 Saturable Absorbers , 2014, Advanced materials.

[33]  Shuangchun Wen,et al.  Large Energy, Wavelength Widely Tunable, Topological Insulator Q-Switched Erbium-Doped Fiber Laser , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Zhengqian Luo,et al.  Nanosecond-Pulsed, Dual-Wavelength Passively Q-Switched c-Cut Nd:YVO$_{\bf 4}$ Laser Using a Few-Layer Bi$_{\bf 2}$ Se$_{\bf 3}$Saturable Absorber , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Zhengqian Luo,et al.  1-, 1.5-, and 2-μm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber , 2014, Journal of Lightwave Technology.

[36]  R. Lieth,et al.  Transition Metal Dichalcogenides , 1977 .

[37]  Zhengqian Luo,et al.  Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 $\mu$m Wavelength , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  V. V. Kononenko,et al.  Laser ablation of dental materials using a microsecond Nd:YAG laser , 2009 .

[39]  Hua Long,et al.  Third-order optical nonlinearities in anatase and rutile TiO2 thin films , 2009 .