Ferdinando Borghese (26 May 1940–19 January 2017)

Abstract Here we summarize the life and scientific legacy of Ferdinando Borghese (1940–2017). He has been a pioneer in the theory and modeling of light scattering by nonspherical particles and clusters in the framework of the transition matrix approach. His work has found applications in many research fields ranging from interstellar dust to aerosol science, plasmonics, and optical trapping.

[1]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[2]  Francesco Priolo,et al.  Size-scaling in optical trapping of silicon nanowires. , 2011, Nano letters.

[3]  P. Denti,et al.  Optical properties of model anisotropic particles on or near a perfectly reflecting surface , 1995 .

[4]  Arianna Giusto,et al.  Optical properties of interstellar grain aggregates , 2004 .

[5]  Arianna Giusto,et al.  Optical Properties of Composite Interstellar Grains: A Morphological Analysis , 2004 .

[6]  P. Denti,et al.  Efficient light-scattering calculations for aggregates of large spheres. , 2003, Applied optics.

[7]  P. Denti,et al.  Light within small particles , 2006 .

[8]  P. Denti,et al.  Radiation pressure cross-sections of fluffy interstellar grains , 2003 .

[9]  Moreno Meneghetti,et al.  Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids , 2011 .

[10]  P. Denti,et al.  ULTRAVIOLET RADIATION INSIDE INTERSTELLAR GRAIN AGGREGATES. III. FLUFFY GRAINS , 2009 .

[11]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .

[12]  David A. Williams,et al.  Stratified dust grains in the interstellar medium – II. Time-dependent interstellar extinction , 2010 .

[13]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[14]  Philip H. Jones,et al.  Optical trapping of carbon nanotubes , 2008 .

[15]  Arianna Giusto,et al.  Transverse components of the radiation force on nonspherical particles in the T-matrix formalism , 2005 .

[16]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[17]  P. Denti,et al.  Beyond Mie Theory: The Transition Matrix Approach in Interstellar Dust Modeling , 2001 .

[18]  R. Saija,et al.  Electromagnetic and light scattering XIII , 2012 .

[19]  P. Denti,et al.  Macroscopic optical constants of a cloud of randomly oriented nonspherical scatterers , 1984 .

[20]  Paolo Denti,et al.  Multiple electromagnetic scattering from a cluster of spheres , 1981 .

[21]  David A. Williams,et al.  Stratified dust grains in the interstellar medium – I. An accurate computational method for calculating their optical properties , 2008 .

[22]  R. T. Wang,et al.  Experimental results of dependent light scattering by two spheres. , 1981, Optics letters.

[23]  David A. Williams,et al.  Porous interstellar grains , 2001 .

[24]  Moreno Meneghetti,et al.  Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. , 2011, ACS nano.

[25]  P. Denti,et al.  An addition theorem for vector Helmholtz harmonics , 1980 .

[26]  O. M. Maragò,et al.  Spectral shift between the near-field and far-field optoplasmonic response in gold nanospheres, nanoshells, homo- and hetero-dimers , 2017 .

[27]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[28]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[29]  P. Denti,et al.  Optical properties of a sphere in the vicinity of a plane surface , 1997 .

[30]  Rosalba Saija,et al.  On the rotational stability of nonspherical particles driven by the radiation torque. , 2007, Optics express.

[31]  Arianna Giusto,et al.  Ultraviolet Radiation inside Interstellar Grain Aggregates. I. The Density of Radiation , 2005 .

[32]  Optical properties of high-density dispersions of particles: application to intralipid solutions. , 2003, Applied optics.

[33]  Rosalba Saija,et al.  Superposition through phases of the far fields scattered by the spheres of an aggregate , 2013 .

[34]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[35]  Rosalba Saija,et al.  Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .

[36]  P. Denti,et al.  On the formation and survival of complex prebiotic molecules in interstellar grain aggregates , 2004, International Journal of Astrobiology.

[37]  P. Denti,et al.  Optical properties of spheres containing a spherical eccentric inclusion , 1992 .

[38]  R. Nozawa Bipolar Expansion of Screened Coulomb Potentials, Helmholtz' Solid Harmonics, and their Addition Theorems , 1966 .

[39]  P. Denti,et al.  Optical properties of a dispersion of anisotropic particles with non-randomly distributed orientations. The case of atmospheric ice crystals , 2001 .

[40]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[41]  P. Denti,et al.  Stratified dust grains in the interstellar medium. III: Infrared cross-sections , 2011 .

[42]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres: far field. , 1997, Applied optics.

[43]  Arianna Giusto,et al.  Ultraviolet Radiation inside Interstellar Grain Aggregates. II. Field Depolarization , 2005 .

[44]  Yong-Le Pan,et al.  Optical scattering by biological aerosols: experimental and computational results on spore simulants. , 2006, Optics express.