Nonlinear optimal control: approximations via moments and LMI-relaxations

We consider the class of nonlinear optimal control problems with all data (differentail equation, state and control constraints, cost) being polynomials. We provide a simple hierarchy of LMI-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Preliminary results show that good approximations are obtained with few moments.

[1]  Emmanuel Trélat,et al.  Robust optimal stabilization of the Brockett integrator via a hybrid feedback , 2005, Math. Control. Signals Syst..

[2]  Onésimo Hernández-Lerma,et al.  Approximation Schemes for Infinite Linear Programs , 1998, SIAM J. Optim..

[3]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[4]  B. Gaveau,et al.  Hamilton–Jacobi theory and the heat kernel on Heisenberg groups , 2000 .

[5]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[6]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[7]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[8]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[9]  Philip E. Gill,et al.  Practical optimization , 1981 .

[10]  J. Lasserre Bounds on measures satisfying moment conditions , 2002 .

[11]  W. Grimm,et al.  Adjoint Estimation from a Direct Multiple Shooting Method , 1997 .

[12]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[13]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[14]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[15]  O. Hernández-Lerma,et al.  Discrete-time Markov control processes , 1999 .

[16]  O. Hernández-Lerma,et al.  THE LINEAR PROGRAMMING APPROACH TO DETERMINISTIC OPTIMAL CONTROL PROBLEMS , 1996 .

[17]  W. Fleming Book Review: Discrete-time Markov control processes: Basic optimality criteria , 1997 .

[18]  R. Fletcher Practical Methods of Optimization , 1988 .

[19]  W. Hager,et al.  Optimal Control: Theory, Algorithms, and Applications , 1998 .