Energy-conserving methods for the nonlinear Schrödinger equation
暂无分享,去创建一个
Luigi Brugnano | Felice Iavernaro | Gianluca Frasca Caccia | Luigi Barletti | L. Brugnano | F. Iavernaro | L. Barletti | Gianluca Frasca-Caccia
[1] M. Qin,et al. MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .
[2] L. Debnath. Solitons and the Inverse Scattering Transform , 2012 .
[3] Donato Trigiante,et al. A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..
[4] M. Secondini,et al. Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach. , 2015, Optics express.
[5] Frank R. Kschischang,et al. Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools , 2012, IEEE Transactions on Information Theory.
[6] L. Brugnano,et al. Hamiltonian BVMs (HBVMs): A Family of "Drift Free" Methods for Integrating polynomial Hamiltonian problems' , 2009 .
[7] L. Brugnano,et al. A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..
[8] Donato Trigiante,et al. The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity , 2010, Appl. Math. Comput..
[9] A. Hasegawa,et al. Eigenvalue communication , 1993 .
[10] Erwan Faou,et al. Geometric Numerical Integration and Schrodinger Equations , 2012 .
[11] Yifa Tang,et al. Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .
[12] F. Dalfovo,et al. Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.
[13] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[14] Hans L. Pecseli. Waves and Oscillations in Plasmas , 2012 .
[15] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[16] Luigi Brugnano,et al. Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..
[17] L. Brugnano,et al. Energy Conservation Issues in the Numerical Solution of Hamiltonian PDEs , 2015 .
[18] Yan Xu,et al. Energy Conserving Local Discontinuous Galerkin Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2014, Journal of Scientific Computing.
[19] L. Brugnano,et al. Blended implementation of block implicit methods for ODEs , 2002 .
[20] G. Benettin,et al. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .
[21] Cecilia Magherini,et al. The BiM code for the numerical solution of ODEs , 2004 .
[22] C. Schober,et al. On the preservation of phase space structure under multisymplectic discretization , 2004 .
[23] Erwan Faou,et al. Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation , 2013, Numerische Mathematik.
[24] V. Zakharov,et al. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .
[25] W. Ketterle,et al. Bose-Einstein condensation , 1997 .
[26] L. Brugnano,et al. Recent Advances in the Numerical Solution of Hamiltonian PDEs , 2015 .
[27] Clemens Heitzinger,et al. A Note on the Symplectic Integration of the Nonlinear Schrödinger Equation , 2004 .
[28] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[29] Víctor M. Pérez-García,et al. Symplectic methods for the nonlinear Schrödinger equation , 1996 .
[30] Mansoor I. Yousefi. Information Transmission using the Nonlinear Fourier Transform , 2013 .
[31] Sandro Stringari,et al. Bose-Einstein condensation and superfluidity , 2016 .
[32] J. M. Sanz-Serna,et al. The Numerical Study of Blowup with Application to a Nonlinear Schrödinger Equation , 1992 .
[33] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[34] B. Leimkuhler,et al. Simulating Hamiltonian Dynamics , 2005 .
[35] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[36] Luigi Brugnano,et al. Blended block BVMs (B 3 VMs): a family of economical implicit methods for ODEs , 2000 .
[37] C. Schober,et al. Geometric integrators for the nonlinear Schrödinger equation , 2001 .
[38] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[39] M. Qin,et al. A multisymplectic variational integrator for the nonlinear Schrödinger equation , 2002 .
[40] J. M. Sanz-Serna,et al. A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .
[41] L. Brugnano,et al. Efficient Implementation of Geometric Integrators for Separable Hamiltonian Problems , 2013, 1306.2439.
[42] L. Brugnano,et al. Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2010, SIAM J. Numer. Anal..
[43] Donato Trigiante,et al. Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2012, SIAM J. Numer. Anal..
[44] L. Brugnano,et al. Line Integral Methods for Conservative Problems , 2015 .
[45] L. Brugnano,et al. Line integral formulation of energy and QUadratic invariants preserving (EQUIP) methods for Hamiltonian systems , 2016 .
[46] B. Leimkuhler,et al. Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .
[47] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[48] Alfred R. Osborne,et al. Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .
[49] Alvaro L. Islas,et al. Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs , 2005, Math. Comput. Simul..
[50] Donato Trigiante,et al. Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..
[51] Existence and stability of solitons for fully discrete approximations of the nonlinear Schrödinger equation , 2012 .
[52] Luigi Brugnano,et al. Efficient implementation of Gauss collocation and Hamiltonian boundary value methods , 2013, Numerical Algorithms.
[53] Erwan Faou,et al. Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part II. Abstract splitting , 2009, Numerische Mathematik.
[54] B. Herbst,et al. Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .
[55] S. Reich,et al. Numerical methods for Hamiltonian PDEs , 2006 .
[56] Relevance of Quantum Mechanics in Circuit Implementation of Ion channels in Brain Dynamics , 2006, q-bio/0606008.
[57] L. Brugnano,et al. Energy and Quadratic Invariants Preserving Integrators of Gaussian Type , 2010, 1008.4790.
[58] Cecilia Magherini,et al. Blended implicit methods for the numerical solution of DAE problems , 2006 .
[59] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[60] L. Brugnano,et al. Recent advances in the numerical solution of Hamiltonian partial differential equations , 2016 .
[61] Yifa Tang,et al. Explicit Symplectic Methods for the Nonlinear Schrödinger Equation , 2009 .
[62] Govind P. Agrawal,et al. Nonlinear Fiber Optics , 1989 .
[63] Ludwig Gauckler,et al. Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times , 2010, Found. Comput. Math..
[64] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[65] Charles H. Townes,et al. Self-trapping of optical beams , 1964 .
[66] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[67] Ying Liu,et al. A novel numerical approach to simulating nonlinear Schro"dinger equations with varying coefficients , 2003, Appl. Math. Lett..