Energy-conserving methods for the nonlinear Schrödinger equation

In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) (Brugnano et al., 2015), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge–Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrodinger equation (NLSE), of interest in many applications. We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional, confers more robustness on the numerical solution of such a problem.

[1]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[2]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[3]  Donato Trigiante,et al.  A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..

[4]  M. Secondini,et al.  Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach. , 2015, Optics express.

[5]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools , 2012, IEEE Transactions on Information Theory.

[6]  L. Brugnano,et al.  Hamiltonian BVMs (HBVMs): A Family of "Drift Free" Methods for Integrating polynomial Hamiltonian problems' , 2009 .

[7]  L. Brugnano,et al.  A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..

[8]  Donato Trigiante,et al.  The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity , 2010, Appl. Math. Comput..

[9]  A. Hasegawa,et al.  Eigenvalue communication , 1993 .

[10]  Erwan Faou,et al.  Geometric Numerical Integration and Schrodinger Equations , 2012 .

[11]  Yifa Tang,et al.  Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .

[12]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[13]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[14]  Hans L. Pecseli Waves and Oscillations in Plasmas , 2012 .

[15]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[16]  Luigi Brugnano,et al.  Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..

[17]  L. Brugnano,et al.  Energy Conservation Issues in the Numerical Solution of Hamiltonian PDEs , 2015 .

[18]  Yan Xu,et al.  Energy Conserving Local Discontinuous Galerkin Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2014, Journal of Scientific Computing.

[19]  L. Brugnano,et al.  Blended implementation of block implicit methods for ODEs , 2002 .

[20]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[21]  Cecilia Magherini,et al.  The BiM code for the numerical solution of ODEs , 2004 .

[22]  C. Schober,et al.  On the preservation of phase space structure under multisymplectic discretization , 2004 .

[23]  Erwan Faou,et al.  Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation , 2013, Numerische Mathematik.

[24]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[25]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[26]  L. Brugnano,et al.  Recent Advances in the Numerical Solution of Hamiltonian PDEs , 2015 .

[27]  Clemens Heitzinger,et al.  A Note on the Symplectic Integration of the Nonlinear Schrödinger Equation , 2004 .

[28]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[29]  Víctor M. Pérez-García,et al.  Symplectic methods for the nonlinear Schrödinger equation , 1996 .

[30]  Mansoor I. Yousefi Information Transmission using the Nonlinear Fourier Transform , 2013 .

[31]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[32]  J. M. Sanz-Serna,et al.  The Numerical Study of Blowup with Application to a Nonlinear Schrödinger Equation , 1992 .

[33]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[34]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[35]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[36]  Luigi Brugnano,et al.  Blended block BVMs (B 3 VMs): a family of economical implicit methods for ODEs , 2000 .

[37]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[38]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[39]  M. Qin,et al.  A multisymplectic variational integrator for the nonlinear Schrödinger equation , 2002 .

[40]  J. M. Sanz-Serna,et al.  A Method for the Integration in Time of Certain Partial Differential Equations , 1983 .

[41]  L. Brugnano,et al.  Efficient Implementation of Geometric Integrators for Separable Hamiltonian Problems , 2013, 1306.2439.

[42]  L. Brugnano,et al.  Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2010, SIAM J. Numer. Anal..

[43]  Donato Trigiante,et al.  Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2012, SIAM J. Numer. Anal..

[44]  L. Brugnano,et al.  Line Integral Methods for Conservative Problems , 2015 .

[45]  L. Brugnano,et al.  Line integral formulation of energy and QUadratic invariants preserving (EQUIP) methods for Hamiltonian systems , 2016 .

[46]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[47]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[48]  Alfred R. Osborne,et al.  Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .

[49]  Alvaro L. Islas,et al.  Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs , 2005, Math. Comput. Simul..

[50]  Donato Trigiante,et al.  Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..

[51]  Existence and stability of solitons for fully discrete approximations of the nonlinear Schrödinger equation , 2012 .

[52]  Luigi Brugnano,et al.  Efficient implementation of Gauss collocation and Hamiltonian boundary value methods , 2013, Numerical Algorithms.

[53]  Erwan Faou,et al.  Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part II. Abstract splitting , 2009, Numerische Mathematik.

[54]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[55]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[56]  Relevance of Quantum Mechanics in Circuit Implementation of Ion channels in Brain Dynamics , 2006, q-bio/0606008.

[57]  L. Brugnano,et al.  Energy and Quadratic Invariants Preserving Integrators of Gaussian Type , 2010, 1008.4790.

[58]  Cecilia Magherini,et al.  Blended implicit methods for the numerical solution of DAE problems , 2006 .

[59]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[60]  L. Brugnano,et al.  Recent advances in the numerical solution of Hamiltonian partial differential equations , 2016 .

[61]  Yifa Tang,et al.  Explicit Symplectic Methods for the Nonlinear Schrödinger Equation , 2009 .

[62]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[63]  Ludwig Gauckler,et al.  Splitting Integrators for Nonlinear Schrödinger Equations Over Long Times , 2010, Found. Comput. Math..

[64]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[65]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[66]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[67]  Ying Liu,et al.  A novel numerical approach to simulating nonlinear Schro"dinger equations with varying coefficients , 2003, Appl. Math. Lett..