Bound-Preserving High-Order Schemes

Abstract For the initial value problem of scalar conservation laws, a bound-preserving property is desired for numerical schemes in many applications. Traditional methods to enforce a discrete maximum principle by defining the extrema as those of grid point values in finite difference schemes or cell averages in finite volume schemes usually result in an accuracy degeneracy to second-order around smooth extrema. On the other hand, successful and popular high-order accurate schemes do not satisfy a strict bound-preserving property. We review two approaches for enforcing the bound-preserving property in high-order schemes. The first one is a general framework to design a simple and efficient limiter for finite volume and discontinuous Galerkin schemes without destroying high-order accuracy. The second one is a bound-preserving flux limiter, which can be used on high-order finite difference, finite volume and discontinuous Galerkin schemes.

[1]  Yingda Cheng,et al.  Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations , 2012, Math. Comput..

[2]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[3]  Blanca Ayuso de Dios,et al.  DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV–POISSON PROBLEM , 2012 .

[4]  Jochen Kall,et al.  A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry , 2015 .

[5]  Stanley Osher,et al.  Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I , 1996 .

[6]  Pierre-Henri Maire,et al.  Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case , 2016, J. Comput. Phys..

[7]  Yong Yang,et al.  A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations , 2014, SIAM J. Numer. Anal..

[8]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[9]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[10]  G. Chavent,et al.  The local projection P0-P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1989 .

[11]  Yi Jiang,et al.  Parametrized Maximum Principle Preserving Limiter for Finite Difference WENO Schemes Solving Convection-Dominated Diffusion Equations , 2013, SIAM J. Sci. Comput..

[12]  Zhengfu Xu,et al.  Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations , 2014, J. Sci. Comput..

[13]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[14]  Hailiang Liu,et al.  Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations , 2014, SIAM J. Sci. Comput..

[15]  Rui Zhang,et al.  High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model , 2011, J. Comput. Appl. Math..

[16]  Xiangxiong Zhang,et al.  A minimum entropy principle of high order schemes for gas dynamics equations , 2011, Numerische Mathematik.

[17]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[18]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[19]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[20]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[21]  Mengping Zhang,et al.  A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework , 2015 .

[22]  Yulong Xing,et al.  Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes , 2013, J. Sci. Comput..

[23]  Xiangxiong Zhang,et al.  Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms , 2011, J. Comput. Phys..

[24]  Edgar Olbrant,et al.  A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer , 2012, J. Comput. Phys..

[25]  Chao Liang,et al.  Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws , 2014, J. Sci. Comput..

[26]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[27]  Richard Sanders,et al.  A third-order accurate variation nonexpansive difference scheme for single nonlinear conservation laws , 1988 .

[28]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[29]  Matthias Ihme,et al.  Entropy-bounded discontinuous Galerkin scheme for Euler equations , 2014, J. Comput. Phys..

[30]  Chi-Wang Shu,et al.  Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics , 2016, J. Comput. Phys..

[31]  Yinhua Xia,et al.  TURBULENCE IN THE INTERGALACTIC MEDIUM: SOLENOIDAL AND DILATATIONAL MOTIONS AND THE IMPACT OF NUMERICAL VISCOSITY , 2013, 1308.4654.

[32]  Chi-Wang Shu,et al.  Positivity-preserving Lagrangian scheme for multi-material compressible flow , 2014, J. Comput. Phys..

[33]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[34]  Florian Schneider,et al.  A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension , 2015, J. Comput. Phys..

[35]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[36]  Zheng Chen,et al.  Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes , 2015, J. Comput. Phys..

[37]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[38]  Xuan Zhao,et al.  A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations , 2014, J. Comput. Phys..

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[41]  Jing-Mei Qiu,et al.  A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere , 2014 .

[42]  Zhengfu Xu,et al.  High Order Maximum-Principle-Preserving Discontinuous Galerkin Method for Convection-Diffusion Equations , 2014, SIAM J. Sci. Comput..

[43]  Derek M. Causon,et al.  POSITIVELY CONSERVATIVE HIGH‐RESOLUTION CONVECTION SCHEMES FOR UNSTRUCTURED ELEMENTS , 1996 .

[44]  M. Massot,et al.  On the Development of High Order Realizable Schemes for the Eulerian Simulation of Disperse Phase Flows: A Convex-State Preserving Discontinuous Galerkin Method , 2014 .

[45]  Yuan Liu,et al.  High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes , 2014, 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS).

[46]  R. Nair,et al.  A Nonoscillatory Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2012 .

[48]  Zhengfu Xu,et al.  High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation , 2013, J. Comput. Phys..

[49]  Guy Chavent,et al.  The local projection P 0 − P 1 -discontinuous-Galerkin finite element method for scalar conservation laws , 2009 .

[50]  Chi-Wang Shu,et al.  High-order finite volume WENO schemes for the shallow water equations with dry states , 2011 .

[51]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[52]  Nikolaus A. Adams,et al.  Positivity-preserving method for high-order conservative schemes solving compressible Euler equations , 2013, J. Comput. Phys..

[53]  Chi-Wang Shu,et al.  Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow , 2011, J. Comput. Phys..

[54]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[55]  Zhengfu Xu,et al.  Positivity-Preserving Finite Difference Weighted ENO Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations , 2015, SIAM J. Sci. Comput..

[56]  Chi-Wang Shu,et al.  Discontinuous Galerkin method for Krause's consensus models and pressureless Euler equations , 2013, J. Comput. Phys..

[57]  Eirik Endeve,et al.  Bound-preserving discontinuous Galerkin methods for conservative phase space advection in curvilinear coordinates , 2015, J. Comput. Phys..

[58]  David C. Seal,et al.  A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..

[59]  Yingda Cheng,et al.  Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..

[60]  Yifan Zhang,et al.  Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes , 2013, J. Comput. Phys..

[61]  Xiangxiong Zhang,et al.  Positivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations , 2015, Journal of Scientific Computing.

[62]  Cheng Wang,et al.  Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations , 2012, J. Comput. Phys..

[63]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations , 2017, J. Comput. Phys..

[64]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[65]  Yan Jiang,et al.  High-order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates , 2015 .

[66]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[67]  Matthew E. Hubbard,et al.  Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .

[68]  François Bouchut,et al.  An Antidiffusive Entropy Scheme for Monotone Scalar Conservation Laws , 2004, J. Sci. Comput..

[69]  A stable, robust and high order accurate numerical method for Eulerian simulation of spray and particle transport on unstructured meshes , 2013 .

[70]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[71]  David C. Seal,et al.  Positivity-Preserving Discontinuous Galerkin Methods with Lax–Wendroff Time Discretizations , 2016, Journal of Scientific Computing.

[72]  G. R. Shubin,et al.  An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions , 1988 .

[73]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  Kailiang Wu,et al.  High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics , 2015, J. Comput. Phys..

[75]  Pierre-Henri Maire,et al.  Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case , 2015, J. Comput. Phys..

[76]  Zhengfu Xu,et al.  A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows , 2013, J. Comput. Phys..

[77]  Zhengfu Xu Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem , 2014, Math. Comput..

[78]  Xiangxiong Zhang,et al.  A Genuinely High Order Total Variation Diminishing Scheme for One-Dimensional Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[79]  Xu-Dong Liu,et al.  A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws , 1993 .

[80]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[81]  Chi-Wang Shu,et al.  Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..

[82]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[83]  Vincent Perrier,et al.  Runge–Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter , 2012 .

[84]  Liwei Xu,et al.  Positivity-preserving DG and central DG methods for ideal MHD equations , 2013, J. Comput. Phys..

[85]  Mark A. Taylor,et al.  Optimization-based limiters for the spectral element method , 2014, J. Comput. Phys..

[86]  Yuan Liu,et al.  A Simple Bound-Preserving Sweeping Technique for Conservative Numerical Approximations , 2017, J. Sci. Comput..

[87]  Jean-Luc Guermond,et al.  A maximum-principle preserving finite element method for scalar conservation equations , 2014 .