On sparse geometry of numbers

[1]  G. Ballew,et al.  The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.

[2]  J. D. Loera,et al.  Optimizing Sparsity over Lattices and Semigroups , 2019, IPCO.

[3]  R. Baker,et al.  Siegel's lemma is sharp for almost all linear systems , 2019, Bulletin of the London Mathematical Society.

[4]  Benny Sudakov,et al.  An algebraic perspective on integer sparse recovery , 2018, Appl. Math. Comput..

[5]  H. Cohen,et al.  Modular Forms: A Classical Approach , 2017 .

[6]  F. Luca,et al.  On arithmetic lattices in the plane , 2016, 1607.04044.

[7]  Iskander Aliev,et al.  Sparse Solutions of Linear Diophantine Equations , 2016, SIAM J. Appl. Algebra Geom..

[8]  Stefan Kühnlein WELL-ROUNDED SUBLATTICES , 2012 .

[9]  S. Thomas McCormick,et al.  Integer Programming and Combinatorial Optimization , 1996, Lecture Notes in Computer Science.

[10]  Wolfgang M. Schmidt,et al.  Diophantine Approximations and Diophantine Equations , 1991 .

[11]  Enrico Bombieri,et al.  On Siegel's lemma , 1983 .

[12]  Hanbo Wang Compressed Sensing: Theory and Applications , 2023, Journal of Physics: Conference Series.

[13]  F. Thorne,et al.  Geometry of Numbers , 2017 .

[14]  M. Koecher,et al.  Elliptische Funktionen und Modulformen , 1998 .

[15]  A. Atkin,et al.  Modular Forms , 2017 .