On sparse geometry of numbers
暂无分享,去创建一个
[1] G. Ballew,et al. The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.
[2] J. D. Loera,et al. Optimizing Sparsity over Lattices and Semigroups , 2019, IPCO.
[3] R. Baker,et al. Siegel's lemma is sharp for almost all linear systems , 2019, Bulletin of the London Mathematical Society.
[4] Benny Sudakov,et al. An algebraic perspective on integer sparse recovery , 2018, Appl. Math. Comput..
[5] H. Cohen,et al. Modular Forms: A Classical Approach , 2017 .
[6] F. Luca,et al. On arithmetic lattices in the plane , 2016, 1607.04044.
[7] Iskander Aliev,et al. Sparse Solutions of Linear Diophantine Equations , 2016, SIAM J. Appl. Algebra Geom..
[8] Stefan Kühnlein. WELL-ROUNDED SUBLATTICES , 2012 .
[9] S. Thomas McCormick,et al. Integer Programming and Combinatorial Optimization , 1996, Lecture Notes in Computer Science.
[10] Wolfgang M. Schmidt,et al. Diophantine Approximations and Diophantine Equations , 1991 .
[11] Enrico Bombieri,et al. On Siegel's lemma , 1983 .
[12] Hanbo Wang. Compressed Sensing: Theory and Applications , 2023, Journal of Physics: Conference Series.
[13] F. Thorne,et al. Geometry of Numbers , 2017 .
[14] M. Koecher,et al. Elliptische Funktionen und Modulformen , 1998 .
[15] A. Atkin,et al. Modular Forms , 2017 .