Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images

ABSTRACT The estimation of vegetation parameters, such as above-ground biomass, with high accuracy using remote sensing data, represents a promising approach. The present study develops models to estimate and map above-ground biomass of Mediterranean Quercus rotundifolia stands using one QuickBird satellite image in pan-sharpened mode, with four multispectral bands (blue, green, red and near infrared) and a spatial resolution of 0.70 m. The satellite image was orthorectified, geometrically and radiometrically corrected. Object-oriented classification methods and multi-resolution segmentation were used to derive a vegetation mask per forest species. Data from forest inventory (24 plots) and vegetation indices (NDVI, EVI, SR and SAVI) derived from high spatial resolution satellite images were used for an area of 133 km2, in southern Portugal. The statistical analysis included correlation, variance analysis and linear regression. The linear regression models fitted included the arithmetic mean and the median values of the vegetation indices per inventory plot as explanatory variables. The overall results of the fitted models show a trend of better performance for those with the median value of the vegetation index as the explanatory variable. The best fitted model (R2 = 75.3) was associated with the Simple Ratio (SR) median value as an explanatory variable. A Quercus rotundifolia above-ground biomass map was produced.

[1]  M. Segura,et al.  Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica 1 , 2005 .

[2]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[3]  Ranga B. Myneni,et al.  Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .

[4]  Nicola Clerici,et al.  Estimating aboveground biomass and carbon stocks in periurban Andean secondary forests using very high resolution imagery , 2016 .

[5]  Christopher Potter,et al.  Terrestrial Biomass and the Effects of Deforestation on the Global Carbon Cycle , 1999 .

[6]  N. Coops,et al.  High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization , 2004 .

[7]  A. Skidmore,et al.  Spatial scale variations in vegetation indices and above-ground biomass estimates: Implications for MERIS , 2001 .

[8]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[9]  Paulo A. Mesquita,et al.  Segmentação e classificação de tipologias florestais a partir de imagens QUICKBIRD Segmentation and classification of forest types with QUICKBIRD images , 2010 .

[10]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[11]  K. Navulur Multispectral Image Analysis Using the Object-Oriented Paradigm , 2006 .

[12]  H. Pretzsch Forest Dynamics, Growth, and Yield , 2010 .

[13]  Warren B. Cohen,et al.  Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models , 2012 .

[14]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[15]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[16]  M. Steininger Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia , 2000 .

[17]  Matthias Peichl,et al.  Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests , 2006 .

[18]  C. Woodcock,et al.  Forest biomass estimation over regional scales using multisource data , 2004 .

[19]  J. Carreiras,et al.  Estimation of tree canopy cover in evergreen oak woodlands using remote sensing , 2006 .

[20]  Osvaldo E. Sala,et al.  A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments , 2007 .

[21]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[22]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[23]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[24]  K. Weber,et al.  Herbaceous Biomass Estimation from SPOT 5 Imagery in Semiarid Rangelands of Idaho , 2011 .

[25]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[26]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[27]  Doadi Antonio Brena,et al.  Inventario florestal nacional , 2013 .

[28]  Fabian Ewald Fassnacht,et al.  Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images , 2015 .

[29]  B. Nelson,et al.  Allometric regressions for improved estimate of secondary forest biomass in the central Amazon , 1999 .

[30]  M. Keller,et al.  Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties , 2008 .

[31]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[32]  R. Dubayah,et al.  Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .

[33]  Guangsheng Zhou,et al.  Determination of green aboveground biomass in desert steppe using litter-soil-adjusted vegetation index , 2014 .

[34]  J. Heiskanen,et al.  Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories , 2007 .

[35]  D. B. Teixeira,et al.  Correlação espacial do índice de vegetação (NDVI) de imagem Landsat/ETM+ com atributos do solo , 2013 .

[36]  Kaj Andersson,et al.  A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data , 1997 .

[37]  J. Pulliainen,et al.  Radar-based forest biomass estimation , 1994 .

[38]  Mats Nilsson,et al.  Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass , 2002 .

[39]  Jaehoon Jung,et al.  Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor , 2015, Sensors.

[40]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[41]  Harold E. Burkhart,et al.  Modeling Forest Trees and Stands , 2012, Springer Netherlands.

[42]  L. F. Watzlawick,et al.  ESTIMATIVA DE BIOMASSA E CARBONO EM PLANTIOS DE PINUS TAEDA L. UTILIZANDO IMAGENS DO SATÉLITE IKONOS II , 2006 .

[43]  R. C. Frohn,et al.  Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ imagery , 2011 .

[44]  S. Shapiro,et al.  A Comparative Study of Various Tests for Normality , 1968 .

[45]  Paulo Mesquita,et al.  Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia , 2015 .

[46]  Sandra A. Brown,et al.  Spatial distribution of biomass in forests of the eastern USA , 1999 .

[47]  M. Vaz,et al.  Leaf-level responses to light in two co-occurring Quercus (Quercus ilex and Quercus suber): leaf structure, chemical composition and photosynthesis , 2011, Agroforestry Systems.

[48]  O. D. S. Watrin,et al.  Uso de imagens orbitais na estimativa de parâmetros estruturais de uma floresta primária no município de Paragominas, Estado do Pará , 2009 .

[49]  H. W. Kassier Forest Dynamics, Growth and Yield: From Measurement to Model , 2011 .

[50]  Elizabeth Maria Feitosa da Rocha de Souza,et al.  SENSORIAMENTO REMOTO NO ESTUDO DA VEGETAÇÃO (MATA ATLÂNTICA): COMPARAÇÕES DAS CURVAS ESPECTRAIS DE SENSORES MULTIESPECTRAIS E HIPERESPECTRAIS , 2012 .

[51]  Yasumasa Hirata,et al.  Estimation of aboveground biomass in mangrove forests using high-resolution satellite data , 2014, Journal of Forest Research.

[52]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[53]  Brendan Mackey,et al.  Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest , 2003 .

[54]  R. G. Oderwald,et al.  Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. , 1983 .

[55]  Lei Ji,et al.  Estimating aboveground biomass in interior Alaska with Landsat data and field measurements , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[56]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[57]  A. Shariff,et al.  Influence of tree species complexity on discrimination performance of vegetation Indices , 2016 .

[58]  Soung-Ryoul Ryu,et al.  Available Fuel Dynamics in Nine Contrasting Forest Ecosystems in North America , 2004 .

[59]  E. Chuvieco,et al.  Biomass Burning Emissions: A Review of Models Using Remote-Sensing Data , 2005, Environmental monitoring and assessment.

[60]  J. Tenhunen,et al.  On the relationship of NDVI with leaf area index in a deciduous forest site , 2005 .

[61]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[62]  Cristina Gómez,et al.  Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART) , 2012, Remote. Sens..

[63]  R. H. Myers Classical and modern regression with applications , 1986 .

[64]  Shilong Piao,et al.  MODIS Based Estimation of Forest Aboveground Biomass in China , 2015, PloS one.

[65]  Jorge M. Palmeirim,et al.  Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour , 2004 .

[66]  Michael A. Wulder,et al.  Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR , 2013, Remote. Sens..

[67]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[68]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[69]  Flávio Felipe Kirchner,et al.  Estimativa de biomassa e carbono em floresta com araucaria utilizando imagens do satélite Ikonos II. , 2009 .

[70]  S. Stehman Estimating the Kappa Coefficient and its Variance under Stratified Random Sampling , 1996 .

[71]  Alfredo Huete,et al.  Indices of Vegetation Activity , 2014 .

[72]  B. Parresol Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons , 1999, Forest Science.

[73]  R. Hall,et al.  Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .

[74]  R. Jackson,et al.  Interpreting vegetation indices , 1991 .

[75]  A. Günlü,et al.  Prediction of Some Stand Parameters using Pan-Sharpened IKONOS Satellite Image , 2014 .

[76]  Manuel Eduardo Ferreira,et al.  Sensoriamento remoto da vegetação: evolução e estado-da-arte - DOI: 10.4025/actascibiolsci.v30i4.5868 , 2008 .

[77]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[78]  R. Foroughbakhch,et al.  Use of quantitative methods to determine leaf biomass on 15 woody shrub species in northeastern Mexico , 2005 .

[79]  L. Tian,et al.  A review of remote sensing methods for biomass feedstock production. , 2011 .

[80]  Ana Caroline Paim Benedetti,et al.  Estimativa do volume total de madeira em espécies de eucalipto a partir de imagens de satélite Landsat , 2012 .

[81]  M. Tomé,et al.  Equações para estimação do volume e biomassa de duas espécies de carvalhos: Quercus suber e Quercus ilex , 2006 .

[82]  Benito Valdés Castrillón,et al.  Flora vascular de Andalucía occidental. 2 , 1987 .

[83]  Erik Næsset,et al.  Advances and emerging issues in national forest inventories , 2010 .