Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images
暂无分享,去创建一个
A. Sousa | A. Gonçalves | Paulo A. Mesquita | Adélia M. O. Sousa | F. L. Macedo | J. Marques da Silva | R. A. Rodrigues | A. C. Gonçalves | Ana Cristina Gonçalves | Fabrício L. Macedo | José R. Marques da Silva | Ricardo A. F. Rodrigues | J. R. Marques da Silva
[1] M. Segura,et al. Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica 1 , 2005 .
[2] J. A. Schell,et al. Monitoring vegetation systems in the great plains with ERTS , 1973 .
[3] Ranga B. Myneni,et al. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .
[4] Nicola Clerici,et al. Estimating aboveground biomass and carbon stocks in periurban Andean secondary forests using very high resolution imagery , 2016 .
[5] Christopher Potter,et al. Terrestrial Biomass and the Effects of Deforestation on the Global Carbon Cycle , 1999 .
[6] N. Coops,et al. High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization , 2004 .
[7] A. Skidmore,et al. Spatial scale variations in vegetation indices and above-ground biomass estimates: Implications for MERIS , 2001 .
[8] S. Popescu,et al. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .
[9] Paulo A. Mesquita,et al. Segmentação e classificação de tipologias florestais a partir de imagens QUICKBIRD Segmentation and classification of forest types with QUICKBIRD images , 2010 .
[10] A. Huete,et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .
[11] K. Navulur. Multispectral Image Analysis Using the Object-Oriented Paradigm , 2006 .
[12] H. Pretzsch. Forest Dynamics, Growth, and Yield , 2010 .
[13] Warren B. Cohen,et al. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models , 2012 .
[14] S. Goetz,et al. Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.
[15] P. Chavez. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .
[16] M. Steininger. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia , 2000 .
[17] Matthias Peichl,et al. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests , 2006 .
[18] C. Woodcock,et al. Forest biomass estimation over regional scales using multisource data , 2004 .
[19] J. Carreiras,et al. Estimation of tree canopy cover in evergreen oak woodlands using remote sensing , 2006 .
[20] Osvaldo E. Sala,et al. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments , 2007 .
[21] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[22] J. R. Jensen. Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .
[23] A. Skidmore,et al. Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .
[24] K. Weber,et al. Herbaceous Biomass Estimation from SPOT 5 Imagery in Semiarid Rangelands of Idaho , 2011 .
[25] A. Huete. A soil-adjusted vegetation index (SAVI) , 1988 .
[26] Onisimo Mutanga,et al. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.
[27] Doadi Antonio Brena,et al. Inventario florestal nacional , 2013 .
[28] Fabian Ewald Fassnacht,et al. Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images , 2015 .
[29] B. Nelson,et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon , 1999 .
[30] M. Keller,et al. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties , 2008 .
[31] M. Ashton,et al. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .
[32] R. Dubayah,et al. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .
[33] Guangsheng Zhou,et al. Determination of green aboveground biomass in desert steppe using litter-soil-adjusted vegetation index , 2014 .
[34] J. Heiskanen,et al. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories , 2007 .
[35] D. B. Teixeira,et al. Correlação espacial do índice de vegetação (NDVI) de imagem Landsat/ETM+ com atributos do solo , 2013 .
[36] Kaj Andersson,et al. A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data , 1997 .
[37] J. Pulliainen,et al. Radar-based forest biomass estimation , 1994 .
[38] Mats Nilsson,et al. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass , 2002 .
[39] Jaehoon Jung,et al. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor , 2015, Sensors.
[40] G. Foody,et al. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .
[41] Harold E. Burkhart,et al. Modeling Forest Trees and Stands , 2012, Springer Netherlands.
[42] L. F. Watzlawick,et al. ESTIMATIVA DE BIOMASSA E CARBONO EM PLANTIOS DE PINUS TAEDA L. UTILIZANDO IMAGENS DO SATÉLITE IKONOS II , 2006 .
[43] R. C. Frohn,et al. Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ imagery , 2011 .
[44] S. Shapiro,et al. A Comparative Study of Various Tests for Normality , 1968 .
[45] Paulo Mesquita,et al. Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia , 2015 .
[46] Sandra A. Brown,et al. Spatial distribution of biomass in forests of the eastern USA , 1999 .
[47] M. Vaz,et al. Leaf-level responses to light in two co-occurring Quercus (Quercus ilex and Quercus suber): leaf structure, chemical composition and photosynthesis , 2011, Agroforestry Systems.
[48] O. D. S. Watrin,et al. Uso de imagens orbitais na estimativa de parâmetros estruturais de uma floresta primária no município de Paragominas, Estado do Pará , 2009 .
[49] H. W. Kassier. Forest Dynamics, Growth and Yield: From Measurement to Model , 2011 .
[50] Elizabeth Maria Feitosa da Rocha de Souza,et al. SENSORIAMENTO REMOTO NO ESTUDO DA VEGETAÇÃO (MATA ATLÂNTICA): COMPARAÇÕES DAS CURVAS ESPECTRAIS DE SENSORES MULTIESPECTRAIS E HIPERESPECTRAIS , 2012 .
[51] Yasumasa Hirata,et al. Estimation of aboveground biomass in mangrove forests using high-resolution satellite data , 2014, Journal of Forest Research.
[52] C. Jordan. Derivation of leaf-area index from quality of light on the forest floor , 1969 .
[53] Brendan Mackey,et al. Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest , 2003 .
[54] R. G. Oderwald,et al. Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. , 1983 .
[55] Lei Ji,et al. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements , 2012, Int. J. Appl. Earth Obs. Geoinformation.
[56] J. Brian Gray,et al. Introduction to Linear Regression Analysis , 2002, Technometrics.
[57] A. Shariff,et al. Influence of tree species complexity on discrimination performance of vegetation Indices , 2016 .
[58] Soung-Ryoul Ryu,et al. Available Fuel Dynamics in Nine Contrasting Forest Ecosystems in North America , 2004 .
[59] E. Chuvieco,et al. Biomass Burning Emissions: A Review of Models Using Remote-Sensing Data , 2005, Environmental monitoring and assessment.
[60] J. Tenhunen,et al. On the relationship of NDVI with leaf area index in a deciduous forest site , 2005 .
[61] Maliha S. Nash,et al. Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.
[62] Cristina Gómez,et al. Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART) , 2012, Remote. Sens..
[63] R. H. Myers. Classical and modern regression with applications , 1986 .
[64] Shilong Piao,et al. MODIS Based Estimation of Forest Aboveground Biomass in China , 2015, PloS one.
[65] Jorge M. Palmeirim,et al. Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour , 2004 .
[66] Michael A. Wulder,et al. Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR , 2013, Remote. Sens..
[67] D. Lu. The potential and challenge of remote sensing‐based biomass estimation , 2006 .
[68] R. Dubayah,et al. Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .
[69] Flávio Felipe Kirchner,et al. Estimativa de biomassa e carbono em floresta com araucaria utilizando imagens do satélite Ikonos II. , 2009 .
[70] S. Stehman. Estimating the Kappa Coefficient and its Variance under Stratified Random Sampling , 1996 .
[71] Alfredo Huete,et al. Indices of Vegetation Activity , 2014 .
[72] B. Parresol. Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons , 1999, Forest Science.
[73] R. Hall,et al. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .
[74] R. Jackson,et al. Interpreting vegetation indices , 1991 .
[75] A. Günlü,et al. Prediction of Some Stand Parameters using Pan-Sharpened IKONOS Satellite Image , 2014 .
[76] Manuel Eduardo Ferreira,et al. Sensoriamento remoto da vegetação: evolução e estado-da-arte - DOI: 10.4025/actascibiolsci.v30i4.5868 , 2008 .
[77] R. Houghton,et al. Aboveground Forest Biomass and the Global Carbon Balance , 2005 .
[78] R. Foroughbakhch,et al. Use of quantitative methods to determine leaf biomass on 15 woody shrub species in northeastern Mexico , 2005 .
[79] L. Tian,et al. A review of remote sensing methods for biomass feedstock production. , 2011 .
[80] Ana Caroline Paim Benedetti,et al. Estimativa do volume total de madeira em espécies de eucalipto a partir de imagens de satélite Landsat , 2012 .
[81] M. Tomé,et al. Equações para estimação do volume e biomassa de duas espécies de carvalhos: Quercus suber e Quercus ilex , 2006 .
[82] Benito Valdés Castrillón,et al. Flora vascular de Andalucía occidental. 2 , 1987 .
[83] Erik Næsset,et al. Advances and emerging issues in national forest inventories , 2010 .