Unitary Linear Dispersion Code Design and Optimization for MIMO Communication Systems

Linear Dispersion Codes (LDCs) have recently attracted numerous research interests. Thanks to their efficient spreading of data across both the time and spatial domains, LDCs are capable of achieving a desired Diversity-Multiplexing Trade-off (DMT) in Multiple Input Multiple Output (MIMO) broadband wireless access systems. This paper proposes a novel LDC design method, which relies on the unitary matrix theory combined with a Genetic Algorithm (GA) aided optimization procedure. The proposed design provides a flexible framework, where new LDCs attaining higher data rates and better error resilience than a number of classic MIMO schemes can be generated.

[1]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[2]  Lajos Hanzo,et al.  Near-Capacity Multi-Functional MIMO Systems , 2009 .

[3]  Lajos Hanzo,et al.  Multiuser MIMO-OFDM for Next-Generation Wireless Systems , 2007, Proceedings of the IEEE.

[4]  Karim Abed-Meraim,et al.  Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.

[5]  Christopher Holden,et al.  Perfect Space-Time Block Codes , 2004 .

[6]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[7]  Xiaodong Wang,et al.  Stochastic gradient algorithms for design of minimum error-rate linear dispersion codes in MIMO wireless systems , 2006, IEEE Transactions on Signal Processing.

[8]  A. Hurwitz,et al.  über die Erzeugung der Invarianten durch Integration , 1963 .

[9]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[10]  Emanuele Viterbo,et al.  The golden code: a 2×2 full-rate space-time code with nonvanishing determinants , 2004, IEEE Trans. Inf. Theory.

[11]  Timothy N. Davidson,et al.  Design of linear dispersion codes: asymptotic guidelines and their implementation , 2005, IEEE Transactions on Wireless Communications.

[12]  Emanuele Viterbo,et al.  The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[13]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[14]  Robert W. Heath,et al.  Linear dispersion codes for MIMO systems based on frame theory , 2002, IEEE Trans. Signal Process..

[15]  Mendoza Freedie Damasco. Simple transmit diversity technique for wireless communications , 2003 .

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[18]  Frédérique E. Oggier,et al.  Perfect Space–Time Block Codes , 2006, IEEE Transactions on Information Theory.

[19]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[20]  Reinaldo A. Valenzuela,et al.  Simplified processing for high spectral efficiency wireless communication employing multi-element arrays , 1999, IEEE J. Sel. Areas Commun..

[21]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[22]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.