High resolution infrared molecular beam spectroscopy of cyanoacetylene clusters

High resolution infrared optothermal spectroscopy has been used to study small clusters of cyanoacetylene, (HCCCN)n, containing three or more monomer units. For the linear HCCCN trimer the fundamental of the free C–H stretch vibration has been rotationally resolved and analyzed, yielding a ground vibrational state rotational constant (B0) of 94.031(13) MHz. In addition, an inner C–H stretch fundamental band of the linear trimer (rotationally unresolved) has been identified by observing the effect of large electric fields on the band shape. This assignment is also consistent with spectral intensity measurements as a function of molecular beam stagnation pressure. Predissociation lifetimes of the upper states of these two bands were determined from the observed homogeneous linewidths. Several other rotationally unresolved vibrational bands have also been observed. The stagnation pressure and electric field dependence of these spectra are used to estimate the cluster sizes and to make tentative structural as...

[1]  G. Scoles,et al.  Noble gas clusters as matrices for infrared spectroscopy. From small clusters to the bulk‐matrix limit: SF6Arn, SF6Krn, and SF6Xen with 100≲n≲10 000 , 1995 .

[2]  K. Schmidt,et al.  HF vibrational redshift for the icosahedral Ar12HF van der Waals cluster is the same as in an Ar matrix: Quantum five‐dimensional bound state calculations , 1994 .

[3]  S. Stolte,et al.  Brute force orientation and the two-dimensional oscillator , 1994 .

[4]  K. Schmidt,et al.  Equilibrium structures and approximate HF vibrational red shifts for ArnHF (n=1-14) van der Waals clusters , 1994 .

[5]  D. Nesbitt High Resolution IR Studies of Polymolecular Clusters: Micromatrices and Unimolecular Ring Opening , 1994 .

[6]  K. Lehmann,et al.  INTRAMOLECULAR DYNAMICS FROM EIGENSTATE-RESOLVED INFRARED SPECTRA , 1995 .

[7]  G. Scoles,et al.  Structure and predissociation dynamics of (HCCCN)2: A high resolution infrared study , 1993 .

[8]  G. A. Bethardy,et al.  Rate and mechanism of intramolecular vibrational redistribution in the ν16 asymmetric methyl stretch band of 1‐butyne , 1993 .

[9]  R. Marcus,et al.  Theoretical study of intramolecular vibrational relaxation of acetylenic CH vibration for v=1 and 2 in large polyatomic molecules (CX3)3YCCH, where X=H or D and Y=C or Si , 1993 .

[10]  R. Saykally,et al.  Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. , 1992, Science.

[11]  Rost,et al.  Pendular states and spectra of oriented linear molecules. , 1992, Physical review letters.

[12]  Miller,et al.  Spectroscopy of pendular states: The use of molecular complexes in achieving orientation. , 1992, Physical review letters.

[13]  D. Herschbach,et al.  On the possibility of orienting rotationally cooled polar molecules in an electric field , 1991 .

[14]  R. L. Roy,et al.  Rate proportional to (frequency shift)2 and other "all else being equal" correlations in vibrational predissociation , 1991 .

[15]  W. Miller,et al.  Theories of intramolecular vibrational energy transfer , 1991 .

[16]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[17]  G. Scoles,et al.  Statistical intramolecular vibrational relaxation and its hindrance: The fundamentals of (CH3)3C–C≡CH and (CH3)3Si–C≡CH , 1990 .

[18]  J. Jortner,et al.  Time scales for molecular photodissociation , 1990 .

[19]  D. Nesbitt,et al.  Vibrational mode mixing in terminal acetylenes: High‐resolution infrared laser study of isolated J states , 1990 .

[20]  L. Pedersen,et al.  The linear and T-shaped isomers of C2H2HCN: Vibrational dynamics from infrared spectroscopy and ab initio theory , 1989 .

[21]  G. T. Fraser,et al.  Microwave and infrared electric‐resonance optothermal spectroscopy of HF–HCl and HCl–HF , 1989 .

[22]  G. Scoles,et al.  Sub‐Doppler rotationally resolved overtone spectroscopy of the HCN dimer , 1989 .

[23]  G. T. Fraser,et al.  Infrared and microwave investigations of interconversion tunneling in the acetylene dimer , 1988 .

[24]  D. Nesbitt High-resolution infrared spectroscopy of weakly bound molecular complexes , 1988 .

[25]  K. Jucks,et al.  The intermolecular bending vibrations of the hydrogen cyanide dimer , 1988 .

[26]  E. Davidson,et al.  Vibrational spectroscopy of hydrogen cyanide clusters , 1988 .

[27]  R. Miller The Vibrational Spectroscopy and Dynamics of Weakly Bound Neutral Complexes , 1988, Science.

[28]  K. Jucks,et al.  Near infrared spectroscopic observation of the linear and cyclic isomers of the hydrogen cyanide trimer , 1988 .

[29]  C. Taft,et al.  Ab initio studies on hydrogen-bonded complexes involving hydrogen cyanide and cyanoacetylene , 1987 .

[30]  H. Lischka,et al.  Ab initio studies on hydrogen-bonded clusters. I. Linear and cyclic oligomers of hydrogen cyanide , 1987 .

[31]  J. Muenter,et al.  Infrared absorption and microwave–infrared double resonance studies of Ne⋅OCS molecular beams , 1987 .

[32]  K. Jucks,et al.  The nitrogen–hydrogen fluoride dimer: Infrared spectroscopy and vibrational predissociation , 1987 .

[33]  G. Ewing Relaxation channels of vibrationally excited Van der Waals molecules , 1982 .

[34]  J. Jortner,et al.  Intermolecular and intramolecular V→V transfer in the vibrational predissociation of some polyatomic van der Waals molecules , 1981 .

[35]  T. E. Gough,et al.  Infrared laser spectroscopy of molecular beams , 1977 .

[36]  A. Fayt,et al.  High resolution infra-red studies of HCCCN and DCCCN , 1976 .

[37]  S. Maeda,et al.  The Infrared Intensities of Stretching Fundamentals in Gaseous and Crystalline Cyanoacetylene , 1974 .

[38]  F. Miller,et al.  The infrared and Raman spectra of dicyanodiacetylene, NCCCCCCN , 1967 .

[39]  W. Lipscomb,et al.  The crystal structures of hydrogen cyanide, HCN , 1951 .