Novel bioactive materials with different mechanical properties.

[1]  Takashi Nakamura,et al.  Bonelike Apatite Formation Induced on Zirconia Gel in a Simulated Body Fluid and Its Modified Solutions , 2004 .

[2]  K. Onuma,et al.  Formation and growth of clusters in conventional and new kinds of simulated body fluids. , 2003, Journal of biomedical materials research. Part A.

[3]  Hyun Min Kim,et al.  Bone-Bonding Ability of Anodic Oxidized Titanium , 2002 .

[4]  T. Kokubo,et al.  Surface Structural Changes of Sintered Hydroxyapatite in Terms of Surface Charge , 2002 .

[5]  N. Miyata,et al.  Mechanical Properties of Bioactive PDMS-CaO-SiO2-TiO2 and PTMO-CaO-TiO2 Hybrids Soaked in a Simulated Body Fluid , 2002 .

[6]  N. Miyata,et al.  Flexible Poly(Tetramethylene Oxide) (PTMO)-TiO2 Hybrid with Apatite-Forming Ability , 2002 .

[7]  Takashi Nakamura,et al.  X‐ray Photoelectron Spectroscopy Study on the Process of Apatite Formation on a Sodium Silicate Glass in Simulated Body Fluid , 2002 .

[8]  Takashi Nakamura,et al.  Structural Dependence of Apatite Formation on Zirconia Gels in a Simulated Body Fluid , 2002 .

[9]  N. Miyata,et al.  Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol-gel processing: effect of CaO and PTMO contents. , 2002, Biomaterials.

[10]  C. Ohtsuki,et al.  Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal , 2002, Journal of materials science. Materials in medicine.

[11]  Takashi Nakamura,et al.  Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment. , 2002, Journal of biomedical materials research.

[12]  Takashi Nakamura,et al.  Bonelike Apatite Formation on Ethylene-Vinyl Alcohol Copolymer Modified with a Silane Coupling Agent and Titania Solution , 2002 .

[13]  C. Ohtsuki,et al.  Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. , 2002, Biomaterials.

[14]  H. M. Kim,et al.  TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. , 2001, Journal of biomedical materials research.

[15]  Takashi Nakamura,et al.  Apatite‐Forming Ability of Sodium‐Containing Titania Gels in a Simulated Body Fluid , 2001 .

[16]  Hyun Min Kim,et al.  Composition of Apatite Produced in Simulated Body Fluids , 2001 .

[17]  N. Miyata,et al.  Apatite-Forming Ability and Mechanical Properties of Polydimethylsiloxane (PDMS)-TiO2 Hybrid Treated with Hot Water , 2001 .

[18]  N. Miyata,et al.  Apatite-Forming Ability and Mechanical Behavior of PTMO-Modified CaO-TiO2 Hybrids Prepared by Sol-Gel Processing , 2001 .

[19]  T. Kokubo,et al.  Zeta-Potential Variation of Bioactive Titanium Metal during Apatite Formation on Its Surface in Simulated Body Fluid , 2001 .

[20]  Hyun Min Kim,et al.  Variation of Clusters in Simulated Body Fluids with Time , 2001 .

[21]  Takashi Nakamura,et al.  Apatite-forming ability of niobium oxide gels in a simulated body fluid , 2001 .

[22]  H. M. Kim,et al.  Effect of thermal treatment on apatite-forming ability of NaOH-treated tantalum metal , 2001, Journal of materials science. Materials in medicine.

[23]  Tatsuo Nakamura,et al.  Bioactivity and Mechanical Properties of Polydimethylsiloxane (PDMS)-CaO-SiO2 Hybrids with Different PDMS Contents , 2001 .

[24]  N. Miyata,et al.  Effect of heat treatment on bioactivity and mechanical properties of PDMS-modified CaO-SiO2-TiO2 hybrids via sol-gel process , 2001, Journal of materials science. Materials in medicine.

[25]  Takashi Nakamura,et al.  Induction and Acceleration of Bonelike Apatite Formation on Tantalum Oxide Gel in Simulated Body Fluid , 2001 .

[26]  H. M. Kim,et al.  An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. , 2001, Journal of biomedical materials research.

[27]  Hyunmin Kim,et al.  Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro , 2001 .

[28]  H. M. Kim,et al.  Alkali- and heat-treated porous titanium for orthopedic implants. , 2001, Journal of biomedical materials research.

[29]  H. M. Kim,et al.  The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. , 2000, Journal of biomedical materials research.

[30]  H. M. Kim,et al.  Bioactive macroporous titanium surface layer on titanium substrate. , 2000, Journal of biomedical materials research.

[31]  Tatsuo Nakamura,et al.  Preparation of Bioactive PDMS-Modified CaO–SiO2–TiO2 Hybrids by the Sol-Gel Method , 2000 .

[32]  N. Miyata,et al.  Bioactivity and mechanical properties of PDMS-modified CaO-SiO(2)-TiO(2) hybrids prepared by sol-gel process. , 2000, Journal of biomedical materials research.

[33]  H. M. Kim,et al.  Formation of bioactive functionally graded structure on Ti-6Al-4V alloy by chemical surface treatment , 2000, Journal of materials science. Materials in medicine.

[34]  Hyun Min Kim,et al.  In Vivo Apatite Formation Induced on Titanium Metal and Its Alloys by Chemical Treatment , 2000 .

[35]  T. Miyazaki,et al.  Revised Simulated Body Fluid , 2000 .

[36]  H. M. Kim,et al.  Bioactive tantalum metal prepared by NaOH treatment. , 2000, Journal of biomedical materials research.

[37]  H. M. Kim,et al.  In vitro bone formation on a bone-like apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. , 2000, Journal of biomedical materials research.

[38]  J. Tanaka,et al.  Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion , 2000, Journal of materials science. Materials in medicine.

[39]  H. M. Kim,et al.  Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment. , 2000, Biomaterials.

[40]  Hyun Min Kim,et al.  Apatite-Forming Ability of Zirconia Gels with Different Structures , 1999 .

[41]  H. M. Kim,et al.  Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. , 1999, Journal of biomedical materials research.

[42]  T. Kokubo,et al.  Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. , 1999, Biomaterials.

[43]  H. M. Kim,et al.  Graded surface structure of bioactive titanium prepared by chemical treatment. , 1999, Journal of biomedical materials research.

[44]  H. M. Kim,et al.  The effect of heat treatment on bone-bonding ability of alkali-treated titanium. , 1999, Biomaterials.

[45]  H. M. Kim,et al.  Bonding of chemically treated titanium implants to bone. , 1997, Journal of biomedical materials research.

[46]  H. M. Kim,et al.  Bonding strength of bonelike apatite layer to Ti metal substrate. , 1997, Journal of biomedical materials research.

[47]  H. M. Kim,et al.  Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment , 1997, Journal of materials science. Materials in medicine.

[48]  M Tanahashi,et al.  Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. , 1997, Journal of biomedical materials research.

[49]  Takashi Nakamura,et al.  Apatite-Forming Ability of Alkali-Treated Ti Metal in Body Environment , 1997 .

[50]  H. M. Kim,et al.  Preparation of bioactive Ti and its alloys via simple chemical surface treatment. , 1996, Journal of biomedical materials research.

[51]  K. Nakanishi,et al.  Apatite-forming ability of silicate ion dissolved from silica gels. , 1996, Journal of biomedical materials research.

[52]  K. Nakanishi,et al.  Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media. , 1996, Journal of biomedical materials research.

[53]  Hyunmin Kim,et al.  Bioactivity of M2O–TiO2–SiO2 (M = Na, K) Glasses: An In vitro Evaluation , 1996 .

[54]  Tadashi Kokubo,et al.  Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals , 1996 .

[55]  Takashi Nakamura,et al.  Bioactivity of Na2O‐CaO‐SiO2 Glasses , 1995 .

[56]  Chikara Ohtsuki,et al.  Dependence of apatite formation on silica gel on its structure : effect of heat treatment , 1995 .

[57]  Y. Bando,et al.  Transmission Electron Microscopic Observation of Glass-Ceramic A-W and Apatite Layer Formed on Its Surface in a Simulated Body Fluid , 2010 .

[58]  R. Happonen,et al.  BIOACTIVE GLASSES: CLINICAL APPLICATIONS , 1993 .

[59]  T. Yamamuro A/W GLASS-CERAMIC: CLINICAL APPLICATIONS , 1993 .

[60]  T Yamamuro,et al.  Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. , 1993, Journal of biomedical materials research.

[61]  L. Hench,et al.  Solution effects on the surface reactions of a bioactive glass. , 1993, Journal of biomedical materials research.

[62]  Y. Bando,et al.  A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. , 1992, Journal of biomedical materials research.

[63]  K. Nakanishi,et al.  Apatite Formation Induced by Silica Gel in a Simulated Body Fluid , 1992 .

[64]  C. Ohtsuki,et al.  Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: itsin vitro evaluation , 1992 .

[65]  T Yamamuro,et al.  Apatite formation on the surface of Ceravital-type glass-ceramic in the body. , 1991, Journal of biomedical materials research.

[66]  T. Yamamuro,et al.  Bone-bonding ability of P2O5-free CaO.SiO2 glasses. , 1991, Journal of biomedical materials research.

[67]  T. Yamamuro,et al.  Bioactivity of CaO·SiO2-based glasses:in vitro evaluation , 1990 .

[68]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of Biomedical Materials Research.

[69]  T. Kokubo Surface chemistry of bioactive glass-ceramics , 1990 .

[70]  T Kitsugi,et al.  Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[71]  T. Yamamuro,et al.  Analysis of A.W glass-ceramic surface by micro-beam x-ray diffraction. , 1990, Journal of biomedical materials research.

[72]  C. Klein,et al.  Plasma sprayed coatings of hydroxylapatite. , 1987, Journal of biomedical materials research.

[73]  T. Kokubu,et al.  SEM-EPMA observation of three types of apatite-containing glass-ceramics implanted in bone: the variance of a Ca-P-rich layer. , 1987, Journal of biomedical materials research.

[74]  Tadashi Kokubo,et al.  Apatite- and Wollastonite-Containg Glass-Ceramics for Prosthetic Application , 1982 .

[75]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[76]  W. Neuman,et al.  THE CHEMICAL DYNAMICS OF BONE MINERAL , 1959 .

[77]  Tadashi Kokubo,et al.  Structural dependence of apatite formation on titania gels in a simulated body fluid. , 2003, Journal of biomedical materials research. Part A.

[78]  Takashi Nakamura,et al.  Apatite-forming ability of CaO-containing titania. , 2002, Biomaterials.

[79]  Masanori Oka,et al.  Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement. , 2002, Journal of biomedical materials research.

[80]  H. M. Kim,et al.  Bonding of alkali- and heat-treated tantalum implants to bone. , 2000, Journal of biomedical materials research.

[81]  H. M. Kim,et al.  Enhancement of bone-bonding strengths of titanium alloy implants by alkali and heat treatments. , 1999, Journal of biomedical materials research.

[82]  K Nakanishi,et al.  The role of hydrated silica, titania, and alumina in inducing apatite on implants. , 1994, Journal of biomedical materials research.

[83]  Chikara Ohtsuki,et al.  Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid , 1992 .

[84]  T. Yamamuro,et al.  Compositional Dependence of Bioactivity of Glasses in the System CaO-SiO2-P2O5 , 1991 .