Extraction sous contraintes d'ensembles de cliques homogènes

Nous proposons une methode de fouille de donnees sur des graphes ayant un ensemble d'etiquettes associe a chaque sommet. Une application est, par exemple, d'analyser un reseau social de chercheurs co-auteurs lorsque des etiquettes precisent les conferences dans lesquelles ils publient.Nous definissons l'extraction sous contraintes d'ensembles de cliques tel que chaque sommet des cliques impliquees partage suffisamment d'etiquettes. Nous proposons une methode pour calculer tous les Ensembles Maximaux de Cliques dits Homogenes qui satisfont une conjonction de contraintes fixee par l'analyste et concernant le nombre de cliques separees, la taille des cliques ainsi que le nombre d'etiquettes partagees. Les experimentations montrent que l'approche fonctionne sur de grands graphes construits a partir de donnees reelles et permet la mise en evidence de structures interessantes.

[1]  Luc De Raedt,et al.  Constraint-Based Pattern Set Mining , 2007, SDM.

[2]  Akira Tanaka,et al.  The worst-case time complexity for generating all maximal cliques and computational experiments , 2006, Theor. Comput. Sci..

[3]  Dino Pedreschi,et al.  ExAnte: Anticipated Data Reduction in Constrained Pattern Mining , 2003, PKDD.

[4]  Pauli Miettinen,et al.  Finding Subgroups having Several Descriptions: Algorithms for Redescription Mining , 2008, SDM.

[5]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[6]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[7]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[8]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Bruno Crémilleux,et al.  Discovering Knowledge from Local Patterns in SAGE Data , 2009 .

[10]  Ron Shamir,et al.  Identification of functional modules using network topology and high-throughput data , 2007, BMC Systems Biology.

[11]  Einoshin Suzuki Undirected Exception Rule Discovery as Local Pattern Detection , 2004, Local Pattern Detection.

[12]  Michael Ley,et al.  DBLP - Some Lessons Learned , 2009, Proc. VLDB Endow..

[13]  Arno J. Knobbe,et al.  Pattern Teams , 2006, PKDD.

[14]  Jian Pei,et al.  Mining frequent cross-graph quasi-cliques , 2009, TKDD.

[15]  Martin Ester,et al.  Mining Cohesive Patterns from Graphs with Feature Vectors , 2009, SDM.

[16]  Aristides Gionis,et al.  Mining Graph Evolution Rules , 2009, ECML/PKDD.

[17]  Mohammed J. Zaki,et al.  Theoretical Foundations of Association Rules , 2007 .

[18]  Tomonobu Ozaki,et al.  Frequent Pattern Discovery from a Single Graph with Quantitative Itemsets , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[19]  Rong Ge,et al.  Joint cluster analysis of attribute data and relationship data , 2008, ACM Trans. Knowl. Discov. Data.

[20]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[21]  Daniel Hanisch,et al.  Co-clustering of biological networks and gene expression data , 2002, ISMB.

[22]  Patrice Boizumault,et al.  Combining CSP and Constraint-Based Mining for Pattern Discovery , 2010, ICCSA.