Hashing via finite field

In order to produce full length probe sequences, the table size m for many existing open addressing hash functions, for example, the widely used double hashing, must be prime, i.e., m=p where p is prime. In this paper, we propose a new and efficient open addressing technique, called hashing via finite field, to construct a new class of hash functions with table size m=p^n, where p is prime and n>=1. It is clear that it includes prime m as a special case when n=1. We show that the new class of hash functions constructed via finite field produces full length probe sequences on all table elements. Also, some theoretic analysis is provided along with concrete examples.

[1]  J. Rotman A First Course in Abstract Algebra , 1995 .

[2]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[3]  W. W. Peterson,et al.  Addressing for Random-Access Storage , 1957, IBM J. Res. Dev..

[4]  Jeffrey D. Ullman A Note on the Efficiency of Hashing Functions , 1972, JACM.

[5]  Gregory L. Heileman Data structures, algorithms, and object-oriented programming , 1996 .

[6]  Arun Munje,et al.  An improved hashing function for IS-2000 quick paging channel , 2001, IEEE Communications Letters.

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  John V. Franco,et al.  The analysis of hashing with lazy deletions , 1992, Inf. Sci..

[9]  Mark Allen Weiss,et al.  Data structures and algorithm analysis in Ada , 1993 .

[10]  Leonidas J. Guibas,et al.  The Analysis of Double Hashing , 1978, J. Comput. Syst. Sci..

[11]  George S. Lueker,et al.  More analysis of double hashing , 1993, Comb..

[12]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[13]  George Kollios,et al.  Hashing Methods for Temporal Data , 2002, IEEE Trans. Knowl. Data Eng..

[14]  Chaouki T. Abdallah,et al.  The exponential hash function , 1997, JEAL.

[15]  J. Rotman Advanced Modern Algebra , 2002 .

[16]  Gaston H. Gonnet,et al.  Handbook Of Algorithms And Data Structures , 1984 .

[17]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[18]  Song Y. Yan Number Theory for Computing , 2002, Springer Berlin Heidelberg.

[19]  Sidney A. Morris,et al.  Abstract Algebra and Famous Impossibilities , 1993 .

[20]  William Stallings,et al.  Cryptography and network security , 1998 .

[21]  Andrew Chi-Chih Yao Uniform hashing is optimal , 1985, JACM.

[22]  Gregory L. Heileman,et al.  Improved exponential hashing , 2004, IEICE Electron. Express.

[23]  Bradley Jay Smith An exponential open hashing function based on dynamical systems theory , 1997 .