Primary sodium ion translocating enzymes.

[1]  H. Hilbi,et al.  Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme. , 1992, European journal of biochemistry.

[2]  M. Bott,et al.  Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae , 1995, Molecular microbiology.

[3]  B. Schink,et al.  Propionigenium modestum gen. nov. sp. nov. a new strictly anaerobic, nonsporing bacterium growing on succinate , 1982, Archives of Microbiology.

[4]  E. Bamberg,et al.  A unifying concept for ion translocation by retinal proteins , 1992, Journal of bioenergetics and biomembranes.

[5]  P. Dimroth,et al.  [41] Sodium pump methylmalonyl-CoA decarboxylase from Veillonella alcalescens , 1986 .

[6]  P. Dimroth Characterization of a membrane-bound biotin-containing enzyme: oxaloacetate decarboxylase from Klebsiella aerogenes. , 1981, European journal of biochemistry.

[7]  R M Macnab,et al.  Genetics and biogenesis of bacterial flagella. , 1992, Annual review of genetics.

[8]  T. Yagi,et al.  The bacterial energy-transducing NADH-quinone oxidoreductases. , 1993, Biochimica et biophysica acta.

[9]  P. Dimroth The generation of an electrochemical gradient of sodium ions upon decarboxylation of oxaloacetate by the membrane-bound and Na+-activated oxaloacetate decarboxylase from Klebsiella aerogenes. , 1982, European journal of biochemistry.

[10]  Y. Kakinuma,et al.  Electrogenic Na+ transport by Enterococcus hirae Na+‐ATPase , 1995, FEBS Letters.

[11]  P. Dimroth,et al.  Construction, expression and characterization of a plasmid-encoded Na(+)-specific ATPase hybrid consisting of Propionigenium modestum F0-ATPase and Escherichia coli F1-ATPase. , 1994, European journal of biochemistry.

[12]  J. Endicott,et al.  The biochemistry of P-glycoprotein-mediated multidrug resistance. , 1989, Annual review of biochemistry.

[13]  H. Hilbi,et al.  The acyl carrier protein of malonate decarboxylase of Malonomonas rubra contains 2'-(5"-phosphoribosyl)-3'-dephosphocoenzyme A as a prosthetic group. , 1996, Biochemistry.

[14]  Y. Zhang,et al.  Changing the Ion Binding Specificity of the Escherichia coli H-transporting ATP Synthase by Directed Mutagenesis of Subunit c(*) , 1995, The Journal of Biological Chemistry.

[15]  M. Girvin,et al.  Hairpin folding of subunit c of F1Fo ATP synthase: 1H distance measurements to nitroxide-derivatized aspartyl-61. , 1994, Biochemistry.

[16]  P. Dimroth,et al.  The Na+‐translocating NADH: ubiquinone oxidoreductase from the marine bacterium Vibrio alginolyticus contains FAD but not FMN , 1995, FEBS letters.

[17]  K. Schleifer,et al.  Sequence of subunits a and b of the sodium ion translocating adenosine triphosphate synthase of Propionigenium modestum. , 1990, Nucleic Acids Research.

[18]  W. Buckel [42] Biotin-dependent decarboxylases as bacterial sodium pumps: Purification and reconstitution of glutaconyl-CoA decarboxylase from Acidaminococcus fermentans , 1986 .

[19]  T. Tomizaki,et al.  Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A , 1995, Science.

[20]  P. Dimroth,et al.  The electrochemical proton potential of Bacillus alcalophilus. , 1991, European journal of biochemistry.

[21]  R. H. Fillingame,et al.  The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. M. Ivey,et al.  The cadC gene product of alkaliphilic Bacillus firmus OF4 partially restores Na+ resistance to an Escherichia coli strain lacking an Na+/H+ antiporter (NhaA) , 1992, Journal of bacteriology.

[23]  J. Walker,et al.  Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. , 1985, Journal of molecular biology.

[24]  A. Odermatt,et al.  Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae(*) , 1995, The Journal of Biological Chemistry.

[25]  T. Unemoto,et al.  Generation of the electrochemical potential of Na+ by the Na+‐motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus , 1985, FEBS letters.

[26]  H. Kaback In and out and up and down with lac permease. , 1992, International review of cytology.

[27]  G. Gottschalk,et al.  Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Dimroth,et al.  Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+gradient , 1982, Nature.

[29]  The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy. , 1995, European journal of biochemistry.

[30]  J. Hoch,et al.  Two-component signal transduction , 1995 .

[31]  B. Schobert,et al.  An NADH:quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions. , 1986, Archives of biochemistry and biophysics.

[32]  M. Hayashi,et al.  FAD and FMN flavoproteins participate in the sodium‐transport respiratory chain NADH:quinone reductase of a marine bacterium, Vibrio alginolyticus , 1986 .

[33]  R. Thauer,et al.  Methanogenesis and the unity of biochemistry , 1993, Cell.

[34]  P. Dimroth The role of biotin and sodium in the decarboxylation of oxaloacetate by the membrane-bound oxaloacetate decarboxylase from Klebsiella aerogenes. , 1982, European journal of biochemistry.

[35]  A. E. Senior The proton-translocating ATPase of Escherichia coli. , 1990, Annual review of biophysics and biophysical chemistry.

[36]  K. Altendorf,et al.  A hybrid adenosinetriphosphatase composed of F1 of Escherichia coli and F0 of Propionigenium modestum is a functional sodium ion pump. , 1990, Biochemistry.

[37]  G. Babcock,et al.  Oxygen activation and the conservation of energy in cell respiration , 1992, Nature.

[38]  P. Dimroth,et al.  The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. , 1989, Biochemistry.

[39]  B. Trumpower,et al.  The protonmotive Q cycle in mitochondria and bacteria. , 1994, Critical reviews in biochemistry and molecular biology.

[40]  U. Gerike,et al.  N‐terminal amino acid sequences of the subunits of the Na+‐translocating F1F0 ATPase from Propionigenium modestum , 1993, FEBS letters.

[41]  V. Skulachev,et al.  The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. , 1986, Biochimica et biophysica acta.

[42]  P. Dimroth,et al.  Formation of a functionally active sodium-translocating hybrid F1F0 ATPase in Escherichia coli by homologous recombination. , 1993, European journal of biochemistry.

[43]  Y. Avi-Dor,et al.  Functional characterization of the uncoupler-insensitive Na+ pump of the halotolerant bacterium, Ba1. , 1986, Archives of biochemistry and biophysics.

[44]  P. Dimroth,et al.  Kinetic analysis of the reaction mechanism of oxaloacetate decarboxylase from Klebsiella aerogenes. , 1986, European journal of biochemistry.

[45]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[46]  R. Thauer,et al.  The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor. , 1994, European journal of biochemistry.

[47]  P. Pedersen,et al.  Ion motive ATPases. I. Ubiquity, properties, and significance to cell function , 1987 .

[48]  M. Hayashi,et al.  Characterization of the Na+-dependent respiratory chain NADH:quinone oxidoreductase of the marine bacterium, Vibrio alginolyticus, in relation to the primary Na+ pump , 1984 .

[49]  H. Wood,et al.  Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli , 1993, Journal of bacteriology.

[50]  D. Molenaar,et al.  Mechanism of Na(+)-dependent citrate transport in Klebsiella pneumoniae , 1992, Journal of bacteriology.

[51]  P. Rich,et al.  Predicted structure and possible ionmotive mechanism of the sodium‐linked NADH‐ubiquinone oxidoreductase of Vibrio alginolyticus , 1995, FEBS letters.

[52]  D. Leach,et al.  Cloning and sequencing of four structural genes for the Na+‐translocating NADH‐ubiquinone oxidoreductase of Vibrio alginolyticus , 1994, FEBS letters.

[53]  H. Kaback,et al.  Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 1. Effect of pH and imposed membrane potential on efflux, exchange, and counterflow. , 1983, Biochemistry.

[54]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[55]  W. Sebald,et al.  N,N'-dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatases from Neurospora crassa and Saccharomyces cerevisiae. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Y. Kakinuma Sodium/proton antiporter in Streptococcus faecalis , 1987, Journal of bacteriology.

[57]  A. R. Lynn,et al.  ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis , 1992, Journal of bacteriology.

[58]  M. Sherman,et al.  A novel type of energetics in a marine alkali‐tolerant bacterium , 1983 .

[59]  I. Smirnova,et al.  Δψ and ΔpH generation by the H+ pumps of the respiratory chain and ATPase in subcellular vesicles from marine bacterium Vibrio alginolyticus , 1990 .

[60]  S. Papa,et al.  Ion-motive ATPases : structure, function, and regulation , 1992 .

[61]  P. Dimroth,et al.  Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type. , 1987, European journal of biochemistry.

[62]  V. Skulachev,et al.  The ATP‐driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus , 1988, FEBS letters.

[63]  P. Dimroth,et al.  Subunit composition of oxaloacetate decarboxylase and characterization of the alpha chain as carboxyltransferase. , 1983, European journal of biochemistry.

[64]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[65]  R. Gennis,et al.  The cytochrome oxidase superfamily of redox-driven proton pumps. , 1994, Trends in biochemical sciences.

[66]  J. Stern Oxalacetate decarboxylase of Aerobacter aerogenes. I. Inhibition by avidin and requirement for sodium ion. , 1967, Biochemistry.

[67]  K. Bendrat,et al.  Cloning, sequencing and expression of the gene encoding the carboxytransferase subunit of the biotin-dependent Na+ pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans in Escherichia coli. , 1993, European journal of biochemistry.

[68]  Y. Zhang,et al.  Subunits Coupling H+ Transport and ATP Synthesis in the Escherichia coli ATP Synthase , 1995, The Journal of Biological Chemistry.

[69]  J C Wootton,et al.  The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. , 1989, Protein engineering.

[70]  J. S. Parkinson,et al.  Communication modules in bacterial signaling proteins. , 1992, Annual review of genetics.

[71]  V. Müller,et al.  Sodium ion dependence of inhibition of the Na+-translocating F1F0-ATPase from Acetobacterium woodii. Probing the site(s) involved in ion transport , 1995 .

[72]  G. Ames,et al.  Bacterial periplasmic permeases belong to a family of transport proteins operating from to human: Traffic ATPases , 1990 .

[73]  K. Williams,et al.  Coding sequence of the precursor of the beta subunit of rat propionyl-CoA carboxylase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Dimroth,et al.  Kinetics of inactivation of the F1Fo ATPase of Propionigenium modestum by dicyclohexylcarbodiimide in relationship to H+ and Na+ concentration: probing the binding site for the coupling ions. , 1993, Biochemistry.

[75]  H. Kobayashi,et al.  Gene structure of Enterococcus hirae (Streptococcus faecalis) F1F0-ATPase, which functions as a regulator of cytoplasmic pH , 1992, Journal of bacteriology.

[76]  P. Dimroth Mechanisms of sodium transport in bacteria. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[77]  W. Buckel,et al.  A biotin‐dependent sodium pump: glutaconyl‐CoA decarboxylase from Acidaminococcus fermentans , 1982, FEBS letters.

[78]  P. Dimroth,et al.  Expression of the sodium ion pump methylmalonyl-coenzyme A-decarboxylase from Veillonella parvula and of mutated enzyme specimens in Escherichia coli , 1995, Journal of bacteriology.

[79]  T Dierks,et al.  Reaction mechanism of the reconstituted tricarboxylate carrier from rat liver mitochondria. , 1993, Biochimica et biophysica acta.

[80]  G. Gottschalk,et al.  Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. , 1992, European journal of biochemistry.

[81]  P Mitchell,et al.  Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. , 1976, Biochemical Society transactions.

[82]  L. Krumholz,et al.  Characterization of the H(+)-pumping F1F0 ATPase of Vibrio alginolyticus , 1990, Journal of bacteriology.

[83]  Y. Hatefi ATP synthesis in mitochondria. , 1993, European journal of biochemistry.

[84]  P. Dimroth,et al.  The ATPase of Bacillus alcalophilus. Reconstitution of energy-transducing functions. , 1991, European journal of biochemistry.

[85]  M. Hayashi,et al.  Modifications by Na+ and K+, and the site of Ag+ inhibition in the Na+-translocating NADH-quinone reductase from a marine Vibrio alginolyticus , 1993 .

[86]  W. Schwarz,et al.  Structure-function relationships of cation binding in the Na+/K(+)-ATPase. , 1993, Biochimica et biophysica acta.

[87]  W. Buckel,et al.  The sodium pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. Specific cleavage by n-alkanols. , 1986, European journal of biochemistry.

[88]  T. A. Krulwich,et al.  Alkaliphiles:‘basic’molecular problems of pH tolerance and bioenergetics , 1995, Molecular microbiology.

[89]  P. Dimroth,et al.  The Na(+)-translocating ATPase of Propionigenium modestum. , 1992, Biochemical Society Transactions.

[90]  P. Dimroth,et al.  Na+-coupled ATP synthesis in Propionigenium modestum: Is it a unique system? , 1990 .

[91]  M. Hayashi,et al.  Purification and properties of cytochrome bo-type ubiquinol oxidase from a marine bacterium Vibrio alginolyticus. , 1993, Biochimica et biophysica acta.

[92]  P. Dimroth,et al.  On the mechanism of sodium ion translocation by oxaloacetate decarboxylase of Klebsiella pneumoniae. , 1993, Biochemistry.

[93]  J. Walker,et al.  Structural aspects of proton-pumping ATPases. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[94]  M. P. Gallagher,et al.  Binding protein-dependent transport systems , 1990, Journal of bioenergetics and biomembranes.

[95]  M. Saraste,et al.  Structural features of cytochrome oxidase , 1990, Quarterly Reviews of Biophysics.

[96]  P. Dimroth,et al.  Reconstitution of Na+ transport from purified methylmalonyl-CoA decarboxylase and phospholipid vesicles. , 1984, European journal of biochemistry.

[97]  P. Dimroth,et al.  Isolation and characterization of oxaloacetate decarboxylase of Salmonella typhimurium, a sodium ion pump , 2004, Archives of Microbiology.

[98]  M. Rohde,et al.  Oxaloacetate decarboxylase from Klebsiella pneumoniae: size and shape of the enzyme, and localization of its prosthetic biotin group by electron microscopic affinity labeling , 1988 .

[99]  D. Gadsby,et al.  Voltage dependence of the Na/K pump. , 1997, The Journal of membrane biology.

[100]  M. Saier,et al.  Transport proteins in bacteria: common themes in their design. , 1992, Science.

[101]  M. E. van der Rest,et al.  Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions. , 1994, European journal of biochemistry.

[102]  M. Hayashi,et al.  Na+-translocating NADH-quinone reductase of marine and halophilic bacteria , 1993, Journal of bioenergetics and biomembranes.

[103]  P. Dimroth,et al.  On the mechanism of sodium ion translocation by methylmalonyl-CoA decarboxylase from Veillonella alcalescens. , 1991, European journal of biochemistry.

[104]  P. Dimroth,et al.  The sodium ion pumping oxaloacetate decarboxylase of Klebsiella pneumoniae Metal ion content, inhibitors and proteolytic degradation studies , 1992, FEBS letters.

[105]  V. Skulachev,et al.  The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus. , 1986, Biochimica et biophysica acta.

[106]  V. Müller,et al.  The molecular structure of the Na+‐translocating F1F0‐ATPase of Acetobacterium woodii, as revealed by electron microscopy, resembles that of H+‐translocating ATPases , 1994, FEBS letters.

[107]  M. Bott,et al.  Purification of two active fusion proteins of the Na+‐dependent citrate carrier of Klebsiella pneumoniae , 1994, FEBS letters.

[108]  M. Simon,et al.  Histidine and aspartate phosphorylation: two-component systems and the limits of homology. , 1994, Trends in biochemical sciences.

[109]  K. Altendorf,et al.  Detection and localization of thei protein inEscherichia coli cells using antibodies , 1991, FEBS letters.

[110]  N. Nelson Evolution of organellar proton-ATPases. , 1992, Biochimica et biophysica acta.

[111]  H. Hilbi,et al.  The malonate decarboxylase enzyme system of Malonomonas rubra: evidence for the cytoplasmic location of the biotin-containing component , 2004, Archives of Microbiology.

[112]  J. Deisenhofer,et al.  The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis , 1989, Science.

[113]  P. Dimroth,et al.  Modification of isolated subunit c of the F1F0‐ATPase from Propionigenium modestum by dicyclohexylcarbodiimide , 1994, FEBS letters.

[114]  P. Mitchell A chemiosmotic molecular mechanism for proton‐translocating adenosine triphosphatases , 1974, FEBS letters.

[115]  M. Hayashi,et al.  Subunit component and their roles in the sodium-transport NADH: quinone reductase of a marine bacterium, Vibrio alginolyticus , 1987 .

[116]  V. Müller,et al.  Purification of ATP synthase from Acetobacterium woodii and identification as a Na(+)-translocating F1F0-type enzyme. , 1994, European journal of biochemistry.

[117]  T. A. Krulwich,et al.  Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria , 1992, Journal of bioenergetics and biomembranes.

[118]  P. Dimroth,et al.  The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme. , 1990, European journal of biochemistry.

[119]  P. Dimroth Na+‐coupled alternative to H+‐coupled primary transport systems in bacteria , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[120]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[121]  P. Srere,et al.  Structure of the prosthetic group of Klebsiella aerogenes citrate (pro-3S)-lyase. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[122]  I. Glynn,et al.  Occluded cations in active transport. , 1990, Annual review of biochemistry.

[123]  P. Dimroth,et al.  Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump. , 1988, Biochemistry.

[124]  G. Gottschalk,et al.  N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein , 1992, Journal of bacteriology.

[125]  R. Thauer,et al.  Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. , 1993, European journal of biochemistry.

[126]  W. Buckel,et al.  Purification, characterisation and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. , 1983, European journal of biochemistry.

[127]  R. Thauer,et al.  Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg). , 1990, European journal of biochemistry.

[128]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[129]  I. Campbell,et al.  Heteronuclear 1H-15N nuclear magnetic resonance studies of the c subunit of the Escherichia coli F1F0 ATP synthase: assignment and secondary structure. , 1992, Biochemistry.

[130]  M. Hoppert,et al.  Cloning, sequencing and immunological characterization of the corrinoid-containing subunit of the N5-methyltetrahydromethanopterin: coenzyme-M methyltransferase from Methanobacterium thermoautotrophicum. , 1993, European journal of biochemistry.

[131]  P. Dimroth,et al.  NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump. , 1996, Biochemistry.

[132]  T. Friedrich,et al.  The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. , 1993, Journal of molecular biology.

[133]  M. Hayashi,et al.  Sequencing and the alignment of structural genes in the nqr operon encoding the Na+‐translocating NADH‐quinone reductase from Vibrio alginolyticus , 1995, FEBS letters.

[134]  R. H. Fillingame H+ transport and coupling by the F0 sector of the ATP synthase: Insights into the molecular mechanism of function , 1992, Journal of bioenergetics and biomembranes.

[135]  P. Dimroth,et al.  Purification and Characterization of a New Sodium‐Transport Decarboxylase , 1983 .

[136]  M. Schmid,et al.  Malonate decarboxylase of Klebsiella pneumoniae catalyses the turnover of acetyl and malonyl thioester residues on a coenzyme-A-like prosthetic group. , 1996, European journal of biochemistry.

[137]  P. Dimroth,et al.  The carboxyltransferase activity of the sodium-ion-translocating methylmalonyl-CoA decarboxylase of Veillonella alcalescens. , 1989, European journal of biochemistry.

[138]  K. Schleifer,et al.  Sequence of subunit c of the sodium ion translocating adenosine triphosphate synthase of Propionigenium modestum. , 1990, European journal of biochemistry.

[139]  P. Dimroth Preparation, characterization, and reconstitution of oxaloacetate decarboxylase from Klebsiella aerogenes, a sodium pump. , 1986, Methods in enzymology.

[140]  J. Walker,et al.  The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. , 1984, Biochimica et biophysica acta.

[141]  P. Dimroth A new sodium‐transport system energized by the decarboxylation of oxaloacetate , 1980, FEBS letters.

[142]  J. Walker,et al.  Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. , 1992, Biochimica et biophysica acta.

[143]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[144]  H. Tokuda Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na+ pump. , 1983, Biochemical and biophysical research communications.

[145]  I. Pastan,et al.  Biochemistry of multidrug resistance mediated by the multidrug transporter. , 1993, Annual review of biochemistry.

[146]  M. Girvin,et al.  Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis. , 1993, Biochemistry.

[147]  K. Schleifer,et al.  Cloning and sequencing of the gene encoding the beta subunit of the sodium ion translocating ATP synthase of Propionigenium modestum , 1988 .

[148]  V. V. Bulygin,et al.  Rotation of subunits during catalysis by Escherichia coli F1-ATPase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Y. Kakinuma,et al.  Mutants of Streptococcus faecalis sensitive to alkaline pH lack Na(+)-ATPase , 1990, Journal of bacteriology.

[150]  P. Dimroth,et al.  Stereochemistry of the methylmalonyl‐CoA decarboxylation reaction , 1987, FEBS letters.

[151]  M. Bott,et al.  Klebsiella pneumoniae genes for citrate lyase and citrate lyase ligase: localization, sequencing, and expression , 1994, Molecular microbiology.

[152]  R. L. Cross The mechanism and regulation of ATP synthesis by F1-ATPases. , 1981, Annual review of biochemistry.

[153]  P. Dimroth,et al.  A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells. , 1995, Journal of molecular biology.

[154]  P. Dimroth,et al.  Carboxylation of pyruvate and acetyl coenzyme A by reversal of the sodium pumps oxaloacetate decarboxylase and methylmalonyl-CoA decarboxylase , 1984 .

[155]  W. Buckel Substrate stereochemistry of the biotin-dependent sodium pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. , 1986, European journal of biochemistry.

[156]  F. Lipmann,et al.  The Roots of Modern Biochemistry , 1988 .

[157]  K. Schleifer,et al.  Cloning, sequencing and in vivo expression of genes encoding the F0 part of the sodium-ion-dependent ATP synthase of Propionigenium modestum in Escherichia coli. , 1992, European journal of biochemistry.

[158]  J. Walker,et al.  The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains , 1992, Quarterly Reviews of Biophysics.

[159]  P. Dimroth,et al.  Citrate transport in Klebsiella pneumoniae. , 1986, Biological chemistry Hoppe-Seyler.

[160]  S. Papa,et al.  F0F1‐ATPase from Vibrio alginolyticus Subunit composition and proton pumping activity , 1991, FEBS Letters.

[161]  B. Rosen,et al.  Mechanisms of metalloregulation of an anion-translocating ATPase , 1995, Journal of bioenergetics and biomembranes.

[162]  T. Unemoto,et al.  A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. , 1981, Biochemical and biophysical research communications.

[163]  P. Cossart,et al.  Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium , 1994, Journal of bacteriology.

[164]  R. Thauer,et al.  The energy conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. , 1995, European journal of biochemistry.

[165]  G. F. Ames,et al.  ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. , 1993, Annual review of microbiology.

[166]  A. Kotlyar,et al.  Energy-induced structural changes in NADH:Q oxidoreductase of the mitochondrial respiratory chain. , 1994, Biochimica et biophysica acta.

[167]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[168]  P. Dimroth,et al.  NADH formation by Na+‐coupled reversed electron transfer in Klebsiella pneumoniae , 1992, Molecular microbiology.

[169]  R. Thauer,et al.  N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence. , 1994, European journal of biochemistry.

[170]  Y. Imae,et al.  Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces , 1992, Nature.

[171]  P. Dimroth,et al.  A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae , 2004, Archives of Microbiology.

[172]  P. Dimroth,et al.  Studies on sodium and hydrogen ion translocation through the F0 part of the sodium-translocating F1F0 ATPase from Propionigenium modestum: discovery of a membrane potential dependent step , 1992 .

[173]  V. Skulachev,et al.  ATP‐driven Na+ transport and Na+‐dependent ATP synthesis in Escherichia coli grown at low \ΔgmH+ , 1993 .

[174]  P. Dimroth,et al.  Functional properties of the purified Na(+)-dependent citrate carrier of Klebsiella pneumoniae: evidence for asymmetric orientation of the carrier protein in proteoliposomes. , 1996, Biochemistry.

[175]  R. Krämer Functional principles of solute transport systems: concepts and perspectives. , 1994, Biochimica et biophysica acta.

[176]  M. Hayashi,et al.  Cloning of the Na+‐translocating NADH‐quinone reductase gene from the marine bacterium Vibrio alginolyticus and the expression of the β‐subunit in Escherichia coli , 1994, FEBS letters.

[177]  G. Nucifora,et al.  Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.