Synthesis and stability of homoleptic metal(III) tetramethylaluminates.

Whereas a number of homoleptic metal(III) tetramethylaluminates M(AlMe(4))(3) of the rare earth metals have proven accessible, the stability of these compounds varies strongly among the metals, with some even escaping preparation altogether. The differences in stability may seem puzzling given that this class of metals usually is considered to be relatively uniform with respect to properties. On the basis of quantum chemically obtained relative energies and atomic and molecular descriptors of homoleptic tris(tetramethylaluminate) and related compounds of rare earth metals, transition metals, p-block metals, and actinides, multivariate modeling has identified the importance of ionic metal-methylaluminate bonding and small steric repulsion between the methylaluminate ligands for obtaining stable homoleptic compounds. Low electronegativity and a sufficiently large ionic radius are thus essential properties for the central metal atom. Whereas scandium and many transition metals are too small and too electronegative for this task, all lanthanides and actinides covered in this study are predicted to give homoleptic compounds stable toward loss of trimethylaluminum, the expected main decomposition reaction. Three of the predicted lanthanide-based compounds Ln(AlMe(4))(3) (Ln = Ce, Tm, Yb) have been prepared and fully characterized in the present work, in addition to Ln(OCH(2)tBu)(3)(AlMe(3))(3) (Ln = Sc, Nd) and [Eu(AlEt(4))(2)](n). At ambient temperature, donor-free hexane solutions of Ln(AlMe(4))(3) of the Ln(3+)/Ln(2+) redox-active metal centers display enhanced reduction to [Ln(AlMe(4))(2)](n) with decreasing negative redox potential, in the order Eu ≫ Yb ≫ Sm. Whereas Eu(AlMe(4))(3) could not be identified, Yb(AlMe(4))(3) turned out to be isolable in low yield. All attempts to prepare the putative Sc(AlMe(4))(3), featuring the smallest rare earth metal center, failed.

[1]  R. Anwander,et al.  Homoleptic rare-earth metal complexes containing Ln-C σ-bonds. , 2010, Chemical reviews.

[2]  K. Törnroos,et al.  Rare-earth metal bis(tetramethylaluminate) complexes supported by a sterically crowded triazenido ligand. , 2010, Dalton transactions.

[3]  K. Törnroos,et al.  Tetramethylcyclopentadienyl-supported rare-earth metal bis(tetramethyl)aluminate complexes: Synthesis, structural chemistry, cation formation, and isoprene polymerization , 2010 .

[4]  N. Mitzel,et al.  Inside Cover: Lewis Base Induced Reductions in Organolanthanide Chemistry (Angew. Chem. Int. Ed. 14/2010) , 2010 .

[5]  R. McDonald,et al.  Monomeric Tetraalkylaluminates of Divalent Ytterbium Stabilized by a Bulky Tris(pyrazolyl)borate Ligand , 2009 .

[6]  K. Törnroos,et al.  Tetramethylaluminate and Tetramethylgallate Coordination in Rare-Earth Metal Half-Sandwich and Metallocene Complexes , 2009 .

[7]  D. Mindiola,et al.  A tribute to Frederick Nye Tebbe. Lewis acid stabilized alkylidyne, alkylidene, and imides of 3d early transition metals. , 2009, Dalton transactions.

[8]  S. Gambarotta,et al.  Unusual Reactivity of a Tm-Pyrrolide/Aluminate Complex with a Metallocene-Type Structural Motif , 2009 .

[9]  K. Törnroos,et al.  Alkaline-Earth Metal Alkylaluminate Chemistry Revisited , 2009 .

[10]  N. Mitzel,et al.  Neutral ligand induced methane elimination from rare-earth metal tetramethylaluminates up to the six-coordinate carbide state. , 2009, Dalton transactions.

[11]  S. Gambarotta,et al.  Aluminate Samarium(II) and Samarium(III) Aryloxides. Isolation of a Single-Component Ethylene Polymerization Catalyst , 2009 .

[12]  J. Ziller,et al.  Reactivity of (C5Me5)2UMe2 and (C5Me5)2UMeCl toward Group 13 Alkyls , 2009 .

[13]  Bo Liu,et al.  Reactivity of Rare-Earth Metal Complexes Stabilized by an Anilido-Phosphinimine Ligand , 2009 .

[14]  K. Törnroos,et al.  A rare-earth metal variant of the Tebbe reagent. , 2008, Angewandte Chemie.

[15]  K. Törnroos,et al.  Elusive trimethyllanthanum: snapshots of extensive methyl group degradation in la--Al heterobimetallic complexes. , 2008, Chemistry.

[16]  D. Mindiola,et al.  Evidence for the existence of a terminal imidoscandium compound: intermolecular C-H activation and complexation reactions with the transient Sc=NAr species. , 2008, Angewandte Chemie.

[17]  Hongjun Fan,et al.  Lewis acid stabilized methylidene and oxoscandium complexes. , 2008, Journal of the American Chemical Society.

[18]  K. Törnroos,et al.  Half-sandwich bis(tetramethylaluminate) complexes of the rare-earth metals: synthesis, structural chemistry, and performance in isoprene polymerization. , 2008, Chemistry.

[19]  J. Okuda,et al.  Neutral and Monocationic Half‐Sandwich Methyl Rare‐Earth Metal Complexes: Synthesis, Structure, and 1,3‐Butadiene Polymerization Catalysis , 2008 .

[20]  K. Törnroos,et al.  Distinct reaction pathways of peralkylated LnIIAlIII heterobimetallic complexes with substituted phenols. , 2008, Inorganic chemistry.

[21]  N. A. Frøystein,et al.  Characterization and reactivity of peralkylated LnIIAlIII heterobimetallic complexes. , 2008, Dalton transactions.

[22]  Z. Hou,et al.  Isoprene polymerization with yttrium amidinate catalysts: switching the regio- and stereoselectivity by addition of AlMe3. , 2008, Angewandte Chemie.

[23]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[24]  Marisa J. Monreal,et al.  Scandium Alkyl Complexes Supported by a Ferrocene Diamide Ligand , 2008 .

[25]  N. A. Frøystein,et al.  Homoleptic rare-earth metal(III) tetramethylaluminates: structural chemistry, reactivity, and performance in isoprene polymerization. , 2007, Chemistry.

[26]  K. Törnroos,et al.  Mono-phosphacyclopentadienyl bis(tetramethylaluminate) lanthanide complexes. , 2007, Dalton transactions.

[27]  H. Brintzinger,et al.  Modification of methylaluminoxane-activated ansa-zirconocene catalysts with triisobutylaluminum-transformations of reactive cations studied by NMR spectroscopy. , 2007, Chemistry.

[28]  K. Törnroos,et al.  Alkyl migration and an unusual tetramethylaluminate coordination mode: unexpected reactivity of organolanthanide imino-amido-pyridine complexes. , 2007, Angewandte Chemie.

[29]  T. Boyle,et al.  Isostructural neo-pentoxide derivatives of group 3 and the lanthanide series metals for the production of Ln2O3 nanoparticles. , 2007, Inorganic chemistry.

[30]  A. Lebedev,et al.  1H and 13C NMR Studies of Cationic Intermediates Formed upon Activation of “Oscillating” Catalyst (2-PhInd)2ZrCl2 with MAO, MMAO, and AlMe3/[CPh3]+[B(C6F5)4]- , 2007 .

[31]  E. Herdtweck,et al.  Synthesis and derivatization of halflanthanidocene aryl(alk)oxide complexes , 2006 .

[32]  Paul D. Bolton,et al.  Synthesis and Ethylene Polymerization Capability of Metallocene-like Imido Titanium Dialkyl Compounds and Their Reactions with AliBu3 , 2006 .

[33]  Vidar R. Jensen,et al.  Structure and stability of networked metallofullerenes of the transition metals. , 2006, The journal of physical chemistry. A.

[34]  W. Scherer,et al.  Discrete Lanthanide Aryl(alk)oxide Trimethylaluminum Adducts as Isoprene Polymerization Catalysts , 2006 .

[35]  K. Törnroos,et al.  Heterobimetallic half-lanthanidocene clusters: novel mixed tetramethylaluminato/chloro coordination. , 2006, Angewandte Chemie.

[36]  K. Törnroos,et al.  "Ionic carbenes": synthesis, structural characterization, and reactivity of rare-Earth metal methylidene complexes. , 2006, Journal of the American Chemical Society.

[37]  F. Perdih,et al.  Structure−Reactivity Relationships in Rare-Earth Metal Carboxylate-Based Binary Ziegler-Type Catalysts , 2006 .

[38]  K. Törnroos,et al.  Multiple C-H bond activation in group 3 chemistry: synthesis and structural characterization of an yttrium-aluminum-methine cluster. , 2006, Journal of the American Chemical Society.

[39]  R. Anwander,et al.  Trimethylyttrium and trimethyllutetium. , 2005, Angewandte Chemie.

[40]  Paul D. Bolton,et al.  Well-defined imidotitanium alkyl cations: agostic interactions, migratory insertion vs.[2+2] cycloaddition, and the first structurally authenticated AlMe(3) adduct of any transition metal alkyl cation. , 2005, Chemical communications.

[41]  D. Stephan The Road to Early-Transition-Metal Phosphinimide Olefin Polymerization Catalysts , 2005 .

[42]  M. Bochmann Kinetic and mechanistic aspects of metallocene polymerisation catalysts , 2004 .

[43]  Robby A. Petros,et al.  Effectiveness in Catalyzing Carboalumination Can Be Inferred from the Rate of Dissociation of M/Al Dimers , 2004 .

[44]  I. I. Zakharov,et al.  A DFT Quantum‐Chemical Study of the Structure of Precursors and Active Sites of Catalyst Based on 2,6‐Bis(imino)pyridyl Fe(II) Complexes , 2004 .

[45]  G. Britovsek,et al.  Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. , 2004, Journal of the American Chemical Society.

[46]  J. Gordon,et al.  Lanthanide alkylidene and imido complexes. , 2004, Dalton transactions.

[47]  Markus Widenmeyer,et al.  Stereospecific polymerization of isoprene with molecular and MCM-48-grafted lanthanide(III) tetraalkylaluminates. , 2004, Angewandte Chemie.

[48]  A. Mortreux,et al.  Group 3 metal catalysts for ethylene and α-olefin polymerization , 2004 .

[49]  S. Arndt,et al.  Homogeneous ethylene-polymerization catalysts based on alkyl cations of the rare-earth metals: are dicationic mono(alkyl) complexes the active species? , 2003, Angewandte Chemie.

[50]  W. Scherer,et al.  High tetraalkylaluminate fluxionality in half-sandwich complexes of the trivalent rare-earth metals. , 2003, Chemical communications.

[51]  O. Eisenstein,et al.  γ Agostic C–H or β agostic Si–C bonds in La{CH(SiMe3)2}3? A DFT study of the role of the ligand , 2003 .

[52]  E. Herdtweck,et al.  Reactivity of Trimethylaluminum with Lanthanide Aryloxides: Adduct and Tetramethylaluminate Formation , 2003 .

[53]  P. Hay,et al.  DFT Study of Tris(bis(trimethylsilyl)methyl)lanthanum and -samarium , 2002 .

[54]  C. Clark,et al.  The First Example of a μ2-Imido Functionality Bound to a Lanthanide Metal Center: X-ray Crystal Structure and DFT Study of [(μ-ArN)Sm(μ-NHAr)(μ-Me)AlMe2]2 (Ar = 2,6-iPr2C6H3)1 , 2002 .

[55]  Z. Hou,et al.  Recent developments in organolanthanide polymerization catalysts , 2002 .

[56]  F. Guérin,et al.  Divergent pathways of C-H bond activation: reactions of (t-Bu(3)PN)(2)TiMe(2) with trimethylaluminum. , 2002, Journal of the American Chemical Society.

[57]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[58]  A. Sobolev,et al.  Study of the ethylene polymerization over homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl complexes of Fe(II) and Co(II) , 2002 .

[59]  T. Ziegler,et al.  DFT Study of Olefin versus Nitrogen Bonding in the Coordination of Nitrogen-Containing Polar Monomers to Diimine and Salicylaldiminato Nickel(II) and Palladium(II) Complexes. Implications for Copolymerization of Olefins with Nitrogen-Containing Polar Monomers , 2002 .

[60]  B. Scott,et al.  Interactions of Remote Alkyl Groups with Lanthanide Metal Centers: Synthesis, Characterization and Ligand Redistribution Reactions of Heterobimetallic Species Containing Trialkylaluminum Fragments , 2002 .

[61]  D. Stephan,et al.  Zirconium Phosphinimide Complexes: Synthesis, Structure, and Deactivation Pathways in Ethylene Polymerization Catalysis , 2001 .

[62]  M. Tafipolsky,et al.  Peralkylated Ytterbium(II) Aluminate Complexes YbAl2R8: New Insights into the Nature of Aluminate Coordination , 2001 .

[63]  E. P. Talsi,et al.  Polymerization of Ethylene Catalyzed by Iron Complex Bearing 2,6‐Bis(imine)pyridyl Ligand: 1H and 2H NMR Monitoring of Ferrous Species Formed via Catalyst Activation with AlMe3, MAO, AlMe3/B(C6F5)3 and AlMe3/CPh3(C6F5)4 , 2001 .

[64]  F. Guérin,et al.  Multiple C−H Bond Activation: Reactions of Titanium−Phosphinimide Complexes with Trimethylaluminum , 2001 .

[65]  Y. Kai,et al.  Alternative η5- and η6-Bonding Modes for Bis(fluorenyl)lanthanide Complexes by Reactions with AlR3 and Succesive Addition of THF , 2000 .

[66]  Stephan,et al.  Five-Coordinate Carbides in Ti-Al-C Complexes Financial support from NSERC of Canada and Nova Chemicals Corporation is gratefully acknowledged. F.G. is grateful for the award of an NSERC Postdoctoral Fellowship. , 2000, Angewandte Chemie.

[67]  K. Vanka,et al.  A Density Functional Study of Ion-Pair Formation and Dissociation in the Reaction between Boron- and Aluminum-Based Lewis Acids with (1,2-Me2Cp)2ZrMe2 , 2000 .

[68]  H. Alt,et al.  Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. , 2000, Chemical reviews.

[69]  G. Frenking,et al.  The nature of the bonding in transition-metal compounds. , 2000, Chemical reviews.

[70]  Stephan,et al.  Titanium-Thiolate-Aluminum-Carbide Complexes by Multiple C-H Bond Activation. , 1999, Angewandte Chemie.

[71]  R. Waymouth,et al.  Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. , 1998, Chemical reviews.

[72]  T. Koetzle,et al.  Neutron Diffraction Study of [Nd(AlMe4 )3 ]⋅0.5 Al2 Me6 at 100 K: The First Detailed Look at a Bridging Methyl Group with a Trigonal-Bipyramidal Carbon Atom. , 1998, Angewandte Chemie.

[73]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[74]  Frank Weinhold,et al.  Natural steric analysis: Ab initio van der Waals radii of atoms and ions , 1997 .

[75]  J. Ziller,et al.  Utility of Arylamido Ligands in Yttrium and Lanthanide Chemistry(1). , 1996, Inorganic chemistry.

[76]  M. N. Burnett,et al.  ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations , 1996 .

[77]  M. Bochmann,et al.  Cationic group IV metal alkyl complexes and their role as olefin polymerization catalysts: The formation of ethyl-bridged dinuclear and heterodinuclear zirconium and hafnium complexes , 1995 .

[78]  David Fischer,et al.  Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts , 1995 .

[79]  J. Ziller,et al.  Utility of mixed-ligand alkylaluminum reagents in the formation of mixed-metal yttrium and lanthanide aluminum compounds , 1995 .

[80]  J. Ziller,et al.  Inclusion of Al2Me6 in the Crystalline Lattice of the Organometallic Complexes LnAl3Me12 , 1995 .

[81]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[82]  M. Bochmann,et al.  Monomer-dimer equilibria in homo- and heterodinuclear cationic alkylzirconium complexes and their role in polymerization catalysis , 1994 .

[83]  J. Ziller,et al.  The Use of Heterometallic Bridging Moieties To Generate Tractable Lanthanide Complexes of Small Ligands , 1994 .

[84]  R. Millini,et al.  Alkylation of lanthanide alkoxides: Synthesis of [Ln(μ-OBut),(μ-Me)3-(AlMe2)3] (Ln = Pr, Nd or Y) , 1994 .

[85]  T. Boyle,et al.  New coordination environments for yttrium formed in situ by heterometallic bridging: Crystal structures of (C5H4SiMe3)Y[(μ-OCMe3)(μ-Me)AlMe2]2 and (Me3SiCH2)Y[(μ-CH2)2 SiMe2][(μ-OR)Li(THF)2]2 , 1993 .

[86]  E. Weiss Structures of Organo Alkali Metal Complexes and Related Compounds , 1993 .

[87]  T. Boyle,et al.  Reactivity of Y3(OR)7Cl2(THF)2 with organoaluminum reagents: formation of the yttrium-aluminum complexes Y(OR)3(AlMe3)3, Y(OR)3(AlMe3)2(THF), and Y(OR)3(AlMe2)Cl(THF)2 and the halides YCl3(DME)2 and YCl3(THF)3Y3(OR)7O (R = CMe3) , 1993 .

[88]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[89]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[90]  A. Siedle,et al.  Solvolysis of dimethylzirconocene by trialkylaluminum compounds , 1991 .

[91]  U. Nagashima,et al.  Theoretical study of the activation of alkane C-H and C-C bonds by different transition metals , 1991 .

[92]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[93]  J. Ziller,et al.  Reactivity of trimethylaluminum with (C5Me5)2Sm(THF)2: synthesis, structure, and reactivity of the samarium methyl complexes (C5Me5)2Sm[(.mu.-Me)AlMe2(.mu.-Me)]2Sm(C5Me5)2 and (C5Me5)2SmMe(THF) , 1988 .

[94]  F. Weinhold,et al.  Natural population analysis , 1985 .

[95]  G. W. Parshall,et al.  Organolanthanides in catalysis , 1985 .

[96]  M. Thompson,et al.  Some aspects of the chemistry of alkyl and hydride derivatives of permethylscandocene , 1984 .

[97]  H. Yamazaki,et al.  A model for coenzyme-metal ion-apoenzyme interactions: crystal structure of the ternary complex [(thiamine pyrophosphate)(1,10-phenanthroline)aquacopper]-dinitrate-water , 1980 .

[98]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[99]  J. E. Jackson,et al.  Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .

[100]  G. W. Parshall,et al.  Olefin homologation with titanium methylene compounds , 1978 .

[101]  R. Andersen,et al.  Structure of tris(bis(trimethylsilyl)amido)neodymium(III), Nd[N(Si(CH3)3)2]3 , 1978 .

[102]  W. Kaminsky,et al.  Extreme Bond Angle Distortion in Organozirconium Compounds Active Toward Ethylene , 1976 .

[103]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[104]  T. Marks Actinide Organometallic Chemistry , 1976, Science.

[105]  H. Sinn,et al.  Mehrfach durch Metalle substituierte Äthane , 1975 .

[106]  J. Atwood,et al.  Stereochemistry of polynuclear compounds of the main group elements. VII. Structure of octamethyldialuminummonomagnesium , 1969 .

[107]  H. Lehmkuhl,et al.  Metallorganische Verbindungen, XLVIII. Erdalkali-bis-tetraalkylalanate und -bis-tetraäthylboranate , 1967 .

[108]  R. Dickerson,et al.  The Crystal Structure of Lithium Aluminum Tetraethyl , 1964 .

[109]  H. Reinheckel Zur reduzierenden Wirkung von Aluminiumtriäthyl , 1963 .

[110]  Seymour Geisser,et al.  Statistical Principles in Experimental Design , 1963 .

[111]  K. Ziegler,et al.  Metallorganische Verbindungen XXII. Magnesium-Aluminium-Organische Komplexverbindungen† , 1957 .

[112]  H. H. Sisler,et al.  Some Reactions of the Etherate of Aluminum Triethyl1 , 1953 .

[113]  D. T. Hurd Complex metal alkyls. , 1948, The Journal of organic chemistry.

[114]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[115]  R. Anwander,et al.  Rare-Earth Metals and Aluminum Getting Close in Ziegler-Type Organometallics , 2006 .

[116]  B. Scott,et al.  Observation of a Significantly Reduced 1JC-H Coupling Constant in an Agostic f-Element Complex: X-ray Crystal Structure of (ArO)Sm[(μ-OAr)(μ-Me)AlMe2]2 (Ar = 2,6-i-Pr2C6H3) , 2002 .

[117]  J. Eppinger,et al.  Synthesis and structural characterisation of rare-earth bis(dimethylsilyl)amides and their surface organometallic chemistry on mesoporous MCM-41† , 1998 .

[118]  M. Bochmann,et al.  Anionic and zwitterionic metallocene complexes derived from novel boratocyclopentadienyl ligands , 1995 .

[119]  W. Kaminsky,et al.  Polymerization of olefins with homogeneous zirconocene/alumoxane catalysts , 1988 .

[120]  Paul von Ragué Schleyer,et al.  Sodium, Potassium, Rubidium, and Cesium: X-Ray Structurai Analysis of Their Organic Compounds1 , 1987 .

[121]  J. Atwood,et al.  Alkyl-bridged complexes of the d- and f-block elements. Part 2. Bis[bis(η-cyclopentadienyl)methylmetal(III)] complexes, and the crystal and molecular structure of the yttrium and ytterbium species , 1979 .

[122]  Gr Scollary The crystal structure of the methyl-bridged yttrium-aluminium complex, [(η-C5H5)2YMe2AlMe2] , 1978 .

[123]  J. Atwood,et al.  µ-Dialkyl inner transition metal(III) tetra-alkylaluminates; the crystal and molecular structure of di-µ-methyl-(dimethylaluminium)biscyclopentadienylyttrium and -ytterbium , 1976 .

[124]  F. A. Hart,et al.  Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides , 1973 .

[125]  D. C. Bradley,et al.  Three-co-ordinated transition metal compounds. Part I. The preparation and characterization of tris(bistrimethylsilylamido)-derivatives of scandium, titanium, vanadium, chromium, and iron , 1972 .

[126]  E. G. Rochow,et al.  A scale of electronegativity based on electrostatic force , 1958 .