Gradient estimates for the 𝑝-Laplacian Lichnerowicz equation on smooth metric measure spaces

<p>In this paper, we consider the weighted <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Laplacian Lichnerowicz equation <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="white up pointing triangle u plus c u Superscript sigma Baseline equals 0"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">△<!-- △ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> </mml:mrow> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>c</mml:mi> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>σ<!-- σ --></mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*} \triangle _{p,f} u+cu^{\sigma }=0 \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> on smooth metric measure spaces, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c greater-than-or-equal-to 0 comma p greater-than 1 comma"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">c\geq 0, p>1,</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma less-than-or-equal-to p minus 1"> <mml:semantics> <mml:mrow> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\sigma \leq p-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are real constants. A local gradient estimate for positive solutions to this equation is derived, and as applications, we give a corresponding Liouville property and Harnack inequality.</p>

[1]  Liang-cai Zhao,et al.  A Liouville theorem for weighted p−Laplace operator on smooth metric measure spaces , 2017 .

[2]  Xiaorui Zhu,et al.  Harnack estimates for a heat-type equation under the Ricci flow☆ , 2016 .

[3]  Yu-Zhao Wang,et al.  Lower Bound Estimates for The First Eigenvalue of The Weighted $p$-Laplacian on Smooth Metric Measure Spaces , 2015, 1512.01031.

[4]  Liang Zhao GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION , 2014 .

[5]  Jia-Yong Wu,et al.  Heat kernel on smooth metric measure spaces with nonnegative curvature , 2014, 1401.6155.

[6]  Liang-cai Zhao Harnack inequality for parabolic Lichnerowicz equations on complete noncompact Riemannian manifolds , 2013 .

[7]  Juncheng Wei,et al.  Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds , 2013 .

[8]  Yue-Ping Zhu,et al.  A sharp gradient estimate for the weighted p-Laplacian , 2012 .

[9]  Xiaodong Wang,et al.  Local gradient estimate for p-harmonic functions on Riemannian manifolds , 2010, 1010.2889.

[10]  Li Ma Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation☆ , 2010 .

[11]  Lin Zhao,et al.  Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds , 2010 .

[12]  Li Ma,et al.  Heat flow method for Lichnerowicz type equations on closed manifolds , 2010, 1003.0053.

[13]  Li Ma,et al.  Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space☆ , 2009 .

[14]  Lei Ni,et al.  Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula , 2007, 0711.2291.

[15]  D. Pollack,et al.  The Einstein-Scalar Field Constraints on Asymptotically Euclidean Manifolds* , 2005, gr-qc/0506101.

[16]  Olivier Druet,et al.  Generalized scalar curvature type equations on compact Riemannian manifolds , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  Liang Zhao Liouville Theorem for Lichnerowicz Equation on Complete Noncompact Manifolds , 2014 .

[18]  Y. Maliki,et al.  SOLVING p-LAPLACIAN EQUATIONS ON COMPLETE MANIFOLDS , 2006 .