A New Ant Colony Optimization Applied for the Multidimensional Knapsack Problem

This paper proposes a Binary Ant System (BAS), a new Ant Colony Optimization applied to multidimensional knapsack problem (MKP). In BAS, artificial ants construct the solutions by selecting either 0 or 1 at every bit stochastically biased by the pheromone level. For ease of implementation, the pheromone is designed specially to directly represent the probability of selection. Experimental results show the advantage of BAS over other ACO based algorithms. The ability of BAS in finding the optimal solutions of various benchmarks indicates its potential in dealing with large size MKP instances.

[1]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[2]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[3]  Luca Maria Gambardella,et al.  A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows , 1999 .

[4]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[5]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[6]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[7]  Marco Dorigo,et al.  The hyper-cube framework for ant colony optimization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Vittorio Maniezzo,et al.  The Ant System Applied to the Quadratic Assignment Problem , 1999, IEEE Trans. Knowl. Data Eng..

[9]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[10]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[11]  M Dorigo,et al.  Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..

[12]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[13]  Z. Michalewicz,et al.  A new version of ant system for subset problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[14]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.